ASTM D3675-2011 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source《柔性多孔材料表面易燃性辐射热源测定的标准试验方法》.pdf

上传人:amazingpat195 文档编号:515234 上传时间:2018-12-02 格式:PDF 页数:10 大小:179.57KB
下载 相关 举报
ASTM D3675-2011 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source《柔性多孔材料表面易燃性辐射热源测定的标准试验方法》.pdf_第1页
第1页 / 共10页
ASTM D3675-2011 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source《柔性多孔材料表面易燃性辐射热源测定的标准试验方法》.pdf_第2页
第2页 / 共10页
ASTM D3675-2011 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source《柔性多孔材料表面易燃性辐射热源测定的标准试验方法》.pdf_第3页
第3页 / 共10页
ASTM D3675-2011 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source《柔性多孔材料表面易燃性辐射热源测定的标准试验方法》.pdf_第4页
第4页 / 共10页
ASTM D3675-2011 Standard Test Method for Surface Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source《柔性多孔材料表面易燃性辐射热源测定的标准试验方法》.pdf_第5页
第5页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D3675 11Standard Test Method forSurface Flammability of Flexible Cellular Materials Using aRadiant Heat Energy Source1This standard is issued under the fixed designation D3675; the number immediately following the designation indicates the year oforiginal adoption or, in the case of rev

2、ision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This is a fire test response standard.1.2 This test method describes the measurement of surfaceflam

3、mability of flexible cellular materials.1.3 This standard measures and describes the response ofmaterials, products, or assemblies to heat and flame undercontrolled conditions, but does not, by itself, incorporate allfactors required for fire hazard or fire risk assessment of thematerials, products,

4、 or assemblies under actual fire conditions.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulat

5、ory limitations prior to use.1.5 Fire testing is inherently hazardous. Adequate safe-guards for personnel and property shall be employed inconducting these tests.1.6 Specific information about hazards is given in Section 7.NOTE 1There is no known ISO equivalent to this standard.1.7 The values stated

6、 in SI units are to be regarded as thestandard. The values stated in inch-pound units, in parentheses,are for information only and are approximations (see alsoIEEE/ASTM SI-10).2. Referenced Documents2.1 ASTM Standards:2E84 Test Method for Surface Burning Characteristics ofBuilding MaterialsE162 Test

7、 Method for Surface Flammability of MaterialsUsing a Radiant Heat Energy SourceE176 Terminology of Fire StandardsE1317 Test Method for Flammability of Marine SurfaceFinishesE1321 Test Method for Determining Material Ignition andFlame Spread PropertiesE1546 Guide for Development of Fire-Hazard-Assess

8、mentStandardsIEEE/ASTM SI-10 Standard for Use of the InternationalSystem of Units (SI): The Modern Metric System2.2 ISO Standards:3ISO 13943 Fire SafetyVocabulary3. Terminology3.1 Definitions:3.1.1 For definitions of terms used in this test method, referto the terminology contained in Terminology E1

9、76 andISO 13943. In case of conflict, the definitions given in Termi-nology E176 shall prevail.3.1.2 flame front, nthe leading edge of a flame propagat-ing through a gaseous mixture or across the surface of a liquidor solid.3.2 Definitions of Terms Specific to This Standard:3.2.1 flashing, nflame fr

10、onts of three seconds or less induration.3.2.2 radiant panel index, Is, nthe product of the flamespread factor, Fsand the heat evolution factor, Q.4. Summary of Test Method4.1 This test method of measuring surface flammability offlexible cellular materials employs a radiant panel heat sourceconsisti

11、ng of a 300 by 460-mm (12 by 18-in.) panel in front ofwhich an inclined 150 by 460-mm (6 by 18-in.) specimen ofthe material is placed. The orientation of the specimen is suchthat ignition is forced near its upper edge and the flame frontprogresses downward.4.2 Factors derived from the rate of progre

12、ss of the flamefront and the rate of heat liberated by the material under test arecombined to provide a radiant panel index.5. Significance and Use5.1 This test method is intended for use when measuringsurface flammability of flexible cellular materials exposed tofire. The test method provides a lab

13、oratory test procedure for1This test method is under the jurisdiction of ASTM Committee D20 on Plasticsand is the direct responsibility of Subcommittee D20.30 on Thermal Properties.Current edition approved Sept. 1, 2011. Published September 2011. Originallyapproved in 1978. Last previous edition app

14、roved in 2009 as D3675 - 09a. DOI:10.1520/D3675-11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available

15、 from International Standardization Organization, P.O. Box 56,CH-1211; Geneva 20, Switzerland.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.measuring and comparing the surface flammability of materialswhen exposed to a prescribed l

16、evel of radiant heat energy. Thetest is conducted using specimens that are representative, to theextent possible, of the material or assembly being evaluated.For example, if an assembly is required to be tested, suchspecimens shall replicate the type and thickness of all thelayers present in the ass

17、embly being evaluated.5.2 The rate at which flames will travel along surfacesdepends upon the physical and thermal properties of thematerial, product, or assembly under test, the specimen mount-ing method and orientation, the type and level of fire or heatexposure, the availability of air, and prope

18、rties of the surround-ing enclosure. (1-6)4, 55.3 Test Method E162 is a generic version of this testmethod, using an apparatus that is substantially the same as theone used in this test method. However, Test Method E162 isnormally intended for application to specimens other thanflexible cellular mat

19、erials.5.3.1 The pilot burner in this test method is different fromthe pilot burner in Test Method E162.5.4 In this procedure, the specimens are subjected to one ormore specific sets of laboratory fire test conditions. If differenttest conditions are substituted or the end-use conditions arechanged,

20、 it is not always possible by or from this test to predictchanges in the fire-test-response characteristics measured.Therefore, the results are valid only for the fire test exposureconditions described in this procedure.5.5 If the test results obtained by this test method are to beconsidered as part

21、 of an overall assessment of fire hazard in abuilding or structure, then the criteria, concepts and proceduresincorporated into Guide E1546 shall be taken into consider-ation.6. Apparatus6.1 The apparatus shall be essentially as shown in Fig. 1 andshall include the following:6.1.1 Radiant Panel with

22、 Air and Gas SupplyThe radiantpanel shall consist of a porous refractory material verticallymounted in a cast iron frame, exposing a radiating surface of300 by 460 mm (12 by 18 in.) and shall be capable of operatingat temperatures up to 820C (1500F). The panel shall beequipped (see Fig. 1) with a ve

23、nturi-type aspirator for mixinggas and air at approximately atmospheric pressure; a centrifu-gal blower, or equivalent, capable of providing 9.4 dm3/s (1200ft3/hour) air at a pressure of 0.7 kPa (2.8 in. water); an air filterto prevent dust from obstructing the panel pores; a pressureregulator and a

24、 control and shut-off valve for the gas supply.6.1.2 Specimen HolderThe specimen holder shall con-form in shape and dimension to Fig. 2 and be constructed fromheat-resistant chromium steel, or other suitable non-combustible material which will not be affected by the heatinput during the test. Observ

25、ation marks shall be filed on thesurface of the specimen holder to correspond with 75-mm(3-in.) interval lines on the specimen.6.1.2.1 The calibration process (see A1.2) shall be con-ducted with the specimen holder to be used in the tests toensure that the physical characteristics of the constructio

26、nmaterial do not affect the test results.6.1.3 Framework for Support of the Specimen HolderTheframework shall have two transverse rods of stainless steel,each 12.5 mm 6 3.0 mm (0.5 6 0.13 in.) in diameter, with astop to center the specimen holder directly in front of theradiant panel. The support an

27、d bracing members shall beconstructed from metal stock. Since the angle of the specimenand its position with respect to the panel are critical, theframework dimensions specifying these conditions shall bewithin 3.0 mm (0.13 in.) of the values given in Fig. 1.6.1.4 Pilot BurnerThe pilot burner shall

28、be a porcelaintube 203-230 mm (8-9 in.) in length, nominally 6.3 mm (0.25in.) in diameter, with two holes 1.5 6 0.1 mm (0.059 6 0.004in.) in diameter equally spaced in the tube (see Fig. 3). Theburner shall be mounted horizontally and at an angle of 15 to20 to the intersection of the horizontal plan

29、e of the burner withthe plane of the specimen with the outlet end of the burnerspaced 32 6 2 mm (1.25 6 0.1 in.) from the specimen (see Fig.3). The pilot shall provide a 150 to 180-mm (6 to 7-in.) flameof acetylene gas premixed with air in an aspirating type fitting.Properly adjusted, the pilot flam

30、e shall have 25-mm (1-in.)inner blue cones and should impinge on the upper centralsurface of the specimen within 13 mm (0.5 in.) of the edge ofthe specimen support frame. Flow rates of 0.015 dm3/s (0.032ft3/min) of acetylene and 0.075 dm3/s (0.16 ft3/min) of air havebeen found to provide the desired

31、 flame.6.1.5 StackThe stack shall be made from nominally1.0-mm (0.040-in.) sheet steel with shape and dimensions asshown in Fig. 1. The position of the stack with respect to thespecimen and radiant heat panel shall also comply with therequirements of Fig. 1.6.1.6 ThermocouplesEight thermocouples of

32、equal resis-tance and connected in parallel shall be mounted in the stackand supported with porcelain insulators as indicated in Fig. 1and Fig. 4. The thermocouples shall be Chromel-Alumel TypeK, shielded against high heat with insulation resisting up to1200C (2190F), and with wire gages in the rang

33、e of0.36-0.51 mm (0.14-0.20 in.) (30 AWG-24 AWG) diameter.The mean stack thermocouple temperature rise for unit heatinput rate of the calibration burner, b, shall be determinedperiodically for the specific test apparatus, using the procedurein A1.2.6.1.7 Automatic Potentiometer RecorderAn automaticp

34、otentiometer recorder in the range from 38 to 538C (100 to1000F) shall be installed to record the temperature variationof the stack thermocouples as described in 6.1.6. Alternatively,a computerized data acquisition system shall be permitted to beused. The data acquisition system shall have facilitie

35、s to recordthe temperature output from the thermopile. The data acquisi-tion system shall have an accuracy of 0.01 % of the maximumtemperature to be measured. Whichever system is used, it shallbe capable of recording, or printing, data at least every 5 s fora minimum of 1 h. For cases where prelimin

36、ary tests indicaterapid flame spread, a system shall be used capable of acquiringdata fast enough to ensure adequate results (see 11.6).4The boldface numbers in parentheses refer to a list of references at the end ofthis standard.5Also see Test Method E162.D3675 1126.1.8 HoodA hood with exhaust blow

37、er placed over thestack is required. Before igniting the panel, but with theexhaust hood operating, the air flow rate through the stack shallproduce a nominal velocity of 0.5 m/s (100 ft/min, 30 m/min).Measurements are to be made with a hot wire anemometer afterat least 30 seconds of insertion of th

38、e probe into the center ofthe stack at a distance of 152 mm (6 in.) down from the top ofthe stack opening. The hot wire anemometer shall have anaccuracy of 60.1 m/s (19 ft/min).6.1.8.1 The velocity is not critical for flame spread measure-ments provided a stack thermocouple calibration is performed(

39、see 6.1.6 and A1.2) for the established test conditions. TheMetric Equivalentsmm in. mm in.1.0 0.040 152 612.712 241 91216.058 457 1822.278 492 193844 134 19.1 by 19.34 by3451 2 38by32 112 by 11464 212 305 by 457 12 by 1871 2.8 330 by 483 13 by 19102 4 51by51by3.2 2by2by18111 438 1.3 by 514 by 914 0

40、.050 by 2014 by 36121 434100 cfm 47.21 litres/sFIG. 1 Details of Construction of Test EquipmentD3675 113hood surfaces shall clear the top and sides of the stack by aminimum of 250 mm (10 in.) and 190 mm (7.5 in.), respec-tively.6.1.8.2 Testing has shown that the air flow rate through thestack, if me

41、asured during operating conditions using a bi-directional probe or similar device, produces a velocity ofapproximately 1.3 m/s (250 ft/min).6.1.9 Radiation PyrometerThe radiation pyrometer forstandardizing the thermal output of the panel shall be suitablefor viewing a circular area 250 mm (10 in.) i

42、n diameter at arange of about 1.2 m (4 ft). It shall be calibrated over theoperating black body temperature range in accordance with theprocedure described in Annex A1.6.1.10 Portable PotentiometerThe electrical output of theradiation pyrometer shall be monitored by means of a poten-tiometer provide

43、d with a millivolt range suitable for use withthe radiation pyrometer described in 6.1.9. Alternatively, thedata shall be permitted to be recorded with a computerized dataacquisition unit, as discussed in 6.1.7.6.1.11 TimerThe timer shall be calibrated to read to 0.01min to record the time of events

44、 during the test.7. Hazards7.1 Safeguards shall be installed in the panel fuel supplysystem to guard against a gas air fuel explosion in the testchamber. Potential safeguards include, but are not limited to,one or more of the following: a gas feed cut-off activated whenthe air supply fails; a flame

45、sensor directed at the panel surfacethat stops fuel flow when the panel flame goes out; and a heatdetector mounted in contact with the radiant panel plenum thatis activated when the panel temperature exceeds safe limits.Manual reset is a requirement of any safeguard system used.7.2 The exhaust syste

46、m must be so designed and operatedthat the laboratory environment is protected from smoke andMetric Equivalentsmm in. mm in.19.034 159 61425 1 433 175832 114 460 181876 3 1.6 by 19 by 533116 by34 by 21133 514FIG. 2 Specimen HolderD3675 114gas. The operator shall be instructed on ways to minimizeexpo

47、sure to combustion products by following sound safetyand industrial hygiene practices. For example, ensure that theexhaust system is working properly and wear appropriateclothing including gloves, safety glasses, breathing apparatus(when hazardous fumes are expected).7.3 During this test, very high

48、heat fluxes and high tempera-tures are generated that are capable of igniting some clothingfollowing even brief exposures. Precautions shall be taken toavoid ignitions of this type.8. Test Specimens8.1 The test specimens shall be 150 by 460 by 25 mm (6 by18 by 1.0 in.). Materials produced at less th

49、an 25-mm thicknessshall be tested at the maximum thickness produced. Materialsproduced at less than 460 mm (18 in.) in length shall bemounted in series to provide a specimen of the proper length.No segment of the specimen shall be less than 150 mm (6 in.)in length.8.2 After cutting or sawing to prepare test specimens, careshall be taken to remove dust and particles from the testspecimen surface.8.3 The back and sides of the test specimen shall bewrapped with aluminum foil, the shiny side against the testspecimen, 0.05 mm (0.002 in.) no

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1