ASTM D5329-2004 Standard Test Methods for Sealants and Fillers Hot-Applied for Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements《沥青及硅酸盐水泥混凝土路面上接缝与裂纹用热铺密封料和填充料的标.pdf

上传人:appealoxygen216 文档编号:519489 上传时间:2018-12-03 格式:PDF 页数:9 大小:105.81KB
下载 相关 举报
ASTM D5329-2004 Standard Test Methods for Sealants and Fillers Hot-Applied for Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements《沥青及硅酸盐水泥混凝土路面上接缝与裂纹用热铺密封料和填充料的标.pdf_第1页
第1页 / 共9页
ASTM D5329-2004 Standard Test Methods for Sealants and Fillers Hot-Applied for Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements《沥青及硅酸盐水泥混凝土路面上接缝与裂纹用热铺密封料和填充料的标.pdf_第2页
第2页 / 共9页
ASTM D5329-2004 Standard Test Methods for Sealants and Fillers Hot-Applied for Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements《沥青及硅酸盐水泥混凝土路面上接缝与裂纹用热铺密封料和填充料的标.pdf_第3页
第3页 / 共9页
ASTM D5329-2004 Standard Test Methods for Sealants and Fillers Hot-Applied for Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements《沥青及硅酸盐水泥混凝土路面上接缝与裂纹用热铺密封料和填充料的标.pdf_第4页
第4页 / 共9页
ASTM D5329-2004 Standard Test Methods for Sealants and Fillers Hot-Applied for Joints and Cracks in Asphaltic and Portland Cement Concrete Pavements《沥青及硅酸盐水泥混凝土路面上接缝与裂纹用热铺密封料和填充料的标.pdf_第5页
第5页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D 5329 04Standard Test Methods forSealants and Fillers, Hot-Applied, for Joints and Cracks inAsphaltic and Portland Cement Concrete Pavements1This standard is issued under the fixed designation D 5329; the number immediately following the designation indicates the year oforiginal adopti

2、on or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods cover tests for hot-applied types ofjoint and crack se

3、alants and fillers for portland cement concreteand asphaltic concrete pavements. There are numerous stan-dard material specifications that use these test methods. Referto the respective standard material specification of interest todetermine which of the following test methods to use. Forsample melt

4、ing and concrete block preparation see theirrespective standard practices.1.2 The test methods appear in the following sections:SectionArtificial Weathering 15Asphalt Compatibility 14Bond, Non-Immersed 9Bond, Fuel-Immersed 11Bond, Water-Immersed 10Cone Penetration, Non-Immersed 6Cone Penetration, Fu

5、el-Immersed 7Flexibility 18Flow 8Resilience 12Resilience, Oven-Aged 13Solubility 17Tensile Adhesion 161.3 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are provided forinformation purposes only.1.4 This standard does not purport to address all of th

6、esafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C 1442 Practice for Conduct

7、ing Tests on Sealants UsingArtificial Weathering ApparatusD 5 Test Method for Penetration of Bituminous MaterialsD 217 Test Methods for Cone Penetration of LubricatingGreaseD 471 Test Method for Rubber Property-Effect of LiquidsD 1074 Test Method for Compressive Strength of Bitumi-nous MixturesD 156

8、1 Practice for Preparation of Bituminous Mixture TestSpecimens by Means of California Kneading CompactorD 1985 Practice for Preparing Concrete Blocks for TestingSealants, for Joints and CracksD 3381 Specification for Viscosity-Graded Asphalt Cementfor Use in Pavement ConstructionD 5167 Practice for

9、Melting of Hot-Applied Joint andCrack Sealant and Filler for EvaluationD 6690 Specification for Joint and Crack Sealants,Hot Applied, for Concrete and Asphalt PavementsE 145 Specification for Gravity-Convection and Forced-Ventilation OvensE 171 Specification for Standard Atmospheres for Condi-tionin

10、g and Testing Flexible Barrier MaterialsG 23 Practice for Operating Light-Exposure Apparatus(Carbon-Arc Type) With and Without Water for Exposureof Nonmetallic Material3G 151 Practice for Exposing Nonmetallic Materials in Ac-celerated Test Devices that Use Laboratory Light SourcesG 153 Practice for

11、Operating Enclosed Carbon Arc LightApparatus for Exposure of Nonmetallic MaterialsG 154 Practice for Operating Fluorescent Light Apparatusfor UV Exposure of Nonmetallic MaterialsG 155 Practice for Operating Xenon Arc Light Apparatusfor Exposure of Non-Metallic Materials3. Significance and Use3.1 The

12、se test methods describe procedures for determiningspecification conformance for hot-applied, field-molded jointand crack sealants and fillers.4. Sample Melting4.1 See Practice D 5167.1These test methods are under the jurisdiction of ASTM Committee D04 onRoad and Paving Materials and are the direct

13、responsibility of SubcommitteeD04.33 on Formed-In-Place Sealants for Joints and Cracks in Pavements.Current edition approved Feb. 1, 2004. Published February 2004. Originallyapproved in 1992. Last previous edition approved in 1996 as D 532996.2For referenced ASTM standards, visit the ASTM website, w

14、ww.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United

15、 States.5. Standard Conditions5.1 The laboratory atmospheric conditions, hereinafter re-ferred to as standard conditions, shall be in accordance withSpecification E 171 (23 6 2C (73.4 6 3.6F).6. Cone Penetration, Non-Immersed6.1 ScopeThis test method covers determination of conepenetration of bitumi

16、nous joint and crack sealers and fillers.6.2 Significance and UseThe cone penetration, non-immersed is a measure of consistency. Higher values indicatea softer consistency.6.3 ApparatusConduct this test using the apparatus de-scribed in Test Method D 5, except as specified herein. Use apenetration c

17、one in place of the standard penetration needle.The cone shall conform to the requirements given in TestMethods D 217, except that the interior construction may bemodified as desired. The total moving weight of the cone andattachments shall be 150.0 6 0.1 g.6.4 Specimen PreparationPour a portion of

18、the sampleprepared in accordance with Practice D 5167 into one 177 mL(6 oz) tin measuring approximately 70 mm in diameter and 45mm in depth and fill flush with the rim of the tin. Allow thespecimen to cure under standard conditions as specified in itsrespective material specification.6.5 ProcedurePl

19、ace the specimen in a water bath main-tained at 25 6 0.1C (77 6 0.2F) for 2 h immediately beforetesting. Remove the specimen from the bath and dry thesurface. Using the apparatus described in 6.3, make determi-nations at three locations on 120 radii, and halfway betweenthe center and outside of the

20、specimen. Take care to ensure thecone point is placed on a point in the specimen that isrepresentative of the material itself and is free of dust, water,bubbles or other foreign material. Clean and dry the cone pointafter each determination.6.6 ReportAverage the three results and record the valueas

21、the penetration of the specimen in110 mm units.6.7 Precision and Bias:6.7.1 For Specification D 6690 Type I materials, the follow-ing precision statement is based on an interlaboratory study of12 laboratories that tested five different Specification D 6690Type I materials.6.7.1.1 Within TinSingle-Op

22、erator Precision (for penetra-tion between 40 and 80): The single-operator deviation hasbeen found to be 0.994. Therefore, results of two properlyconducted tests by the same operator should not differ by morethan three penetration units.6.7.1.2 Within and Between LaboratoriesSingle-OperatorPrecision

23、 (penetrations 40 to 80): The single-operator standarddeviation of a single test (test result is defined as the average ofthree penetrations) has been found to be 0.924. Therefore, theresults of two properly conducted tests by the same operator onthe same material should not differ by more than thre

24、epenetration units.6.7.1.3 Multilaboratory Precision(penetration 40 to 80):The multilaboratory standard deviation of a single test (testresult is defined as the average of three penetrations) has beenfound to be 3.249. Therefore, the results of two properlyconducted tests in different laboratories s

25、hould not differ bymore than nine penetration units.6.7.2 For Specification D 6690 Type II materials, the fol-lowing precision statement is based on an interlaboratory studyof eleven laboratories that tested six different SpecificationD 6690 Type II materials.6.7.2.1 Within TinSingle-Operator Precis

26、ion (for penetra-tion between 55 and 85): The single-operator deviation hasbeen found to be 0.974. Therefore, results of two properlyconducted tests by the same operator should not differ by morethan three penetration units.6.7.2.2 Within and Between LaboratoriesSingle-OperatorPrecision (penetration

27、s 50 to 70): The single-operator standarddeviation of a single test (test result is defined as the average ofthree penetrations) has been found to be 1.0865. Therefore, theresults of two properly conducted tests by the same operator onthe same material should not differ by more than threepenetration

28、 units.6.7.2.3 Single-Operator Precision(penetrations 71 to 85):The single-operator standard deviation of a single test (testresult is defined as the average of three penetrations) has beenfound to be 2.237. Therefore, the results of two properlyconducted tests by the same operator on the same mater

29、ialshould not differ by more than six penetration units.6.7.2.4 Multilaboratory Precision(penetration 50 to 70):The multilaboratory standard deviation of a single test (testresult is defined as the average of three penetrations) has beenfound to be 5.2609. Therefore, the results of two properlycondu

30、cted tests in different laboratories should not differ bymore than 15 penetration units.6.7.2.5 Multilaboratory Precision(penetration 71 to 85):The multilaboratory standard deviation of a single test (testresult is defined as the average of three penetrations) has beenfound to be 16.8831. Therefore,

31、 the results of two properlyconducted tests in different laboratories should not differ bymore than 48 penetration units.7. Cone Penetration, Fuel-Immersed7.1 ScopeThis test method covers the determination ofcone penetration after immersion in reference fuel.7.2 Significance and UseThe cone penetrat

32、ion is a mea-sure of consistency of the material. Higher penetration valuesindicate a softer consistency. Large changes in penetrationfrom the cone penetration, non-immersed value indicate asignificant effect of the reference fuel on the sealant.7.3 ApparatusSame as described in 6.3.7.4 Specimen Pre

33、parationPour a portion of the sampleprepared in accordance with Practice D 5167 into one 177 mL(6 oz) tin, then proceed as in 6.4.7.5 Specimen PreparationImmerse the specimen pre-pared as described in 6.4 for 24 h in approximately 500 mL(0.53 qt) to provide a minimum of 12 mm cover of clean testfuel

34、 conforming to the requirements of Reference Fuel B ofTest Method D 471, maintained in a water bath at a constanttemperature of 40 6 1C (120 6 2F). Discard the test fuelafter each specimen immersion. After the 24 h immersion, drythe specimen under a draft of an approximately 300 mm (12in.) diameter

35、electric fan at standard conditions for 1 h. TheD5329042placement of the fan shall be such as to maintain air velocity of0.75 to 2.50 m/s (150 to 500 ft/min) over the sample.7.6 ProcedureTest as described in 6.5.7.7 ReportRecord as described in 6.6.7.8 Precision and BiasThe precision and bias of thi

36、s testmethod for measuring cone penetration are as specified inSection 6.8. Flow8.1 ScopeThis test method measures the amount of flowof bituminous joint and crack sealants when held at a 75 angleat elevated temperatures.8.2 Significance and UseThis test method is a means ofmeasuring the ability of a

37、 sealant to resist flow from the jointor crack at high ambient temperatures.8.3 Apparatus:8.3.1 MoldConstruct a mold (see Note 1) 40 mm wide by60 mm long by 3.2 mm deep (1.57 in. wide by 2.36 in. long by0.125 in. deep) and place it on a bright tin panel. The tin platemust be free of dirt, oil, and s

38、o forth and be between 0.25 to0.64 mm in thickness (0.010 and 0.025 in. in thickness).NOTE 1A release agent should be used to coat molds and spacers toprevent them from bonding to the sealants. Extreme care should beexercised to avoid contaminating the area where the joint sealant makescontact with

39、the blocks. A non-toxic release agent is recommended for thispurpose. Two examples that have been found suitable for this purpose areKY jelly (available at drug stores) and a release agent prepared bygrinding a mixture of approximately 50 % talc, 35 % glycerine, and 15 %by weight, of a water-soluble

40、 medical lubricant into a smooth paste.8.3.2 OvenForced draft type conforming to SpecificationE 145 and capable of controlling its temperature 61C.8.4 Specimen PreparationPour a portion of the sampleprepared in accordance with Practice D 5167 for meltingsamples into the mold described in 8.3. Fill t

41、he mold with anexcess of material. Allow the test specimen to cool at standardconditions for at least12 h, then trim the specimen flush withthe face of the mold with a heated metal knife or spatula andremove the mold. Allow the specimen to cure under standardconditions as specified in its respective

42、 material specification.8.5 ProcedureMark reference lines on the panel at thebottom edge of the sealant. Then place the panel containing thesample in a forced-draft oven maintained for the time and at thetemperature specified in its respective material specification.During the test, mount the panel

43、so that the longitudinal axis ofthe specimen is at an angle of 75 6 1 with the horizontal, andthe transverse axis is horizontal. After the specified test period,remove the panel from the oven and measure the movement ofthe specimen below the reference lines in millimetres.8.6 ReportReport the measur

44、ement obtained in 8.5 inmillimetres.8.7 Precision and Bias:8.7.1 For Specification D 6690 Type I materials, the follow-ing precision statement is based on an interlaboratory study of12 laboratories that tested five different Specification D 6690Type I materials.8.7.1.1 Single-Operator Precision (flo

45、w 0 to 5)Thesingle-operator standard deviation has been found to be 0.255.Therefore, the results of two properly conducted tests by thesame operator should not differ by more than one flow unit.8.7.1.2 Single-Operator Precision (flow 5 to 10)Thesingle-operator standard deviation has been found to be

46、 1.024.Therefore, the results of two properly conducted tests by thesame operator should not differ by more than three flow units.8.7.1.3 Multilaboratory Precision (flow 0 to 5)The mul-tilaboratory standard deviation has been found to be 4.256.Therefore, the results of two properly conducted tests i

47、ndifferent laboratories should not differ by more than 12 flowunits.8.7.1.4 Multilaboratory Precision (flow 5 to 10)The mul-tilaboratory standard deviation has been found to be 5.326.Therefore, the results of two properly conducted tests indifferent laboratories should not differ by more than 15 flo

48、wunits.8.7.2 For Specification D 6690 Type II materials, thefollowing precision statement is based on an interlaboratorystudy of eleven laboratories that tested six different Specifica-tion D 6690 Type II materials.8.7.2.1 Single-Operator Precision (flow 0 to 1)Thesingle-operator standard deviation

49、has been found to be 0.2494.Therefore, the results of two properly conducted tests by thesame operator should not differ by more than one flow unit.8.7.2.2 Single-Operator Precision (flow 1.1 to 4)Thesingle-operator standard deviation has been found to be 0.7616.Therefore, the results of two properly conducted tests by thesame operator should not differ by more than three flow units.8.7.2.3 Multilaboratory Precision (flow 0 to 1)The mul-tilaboratory standard deviation has been found to be 0.5644.Therefore, the results of two properly co

展开阅读全文
相关资源
猜你喜欢
  • STAS 11170-1978 POWDER EGG-WHITE FOR LEATHER INDUSTRY《皮革工业的蛋白粉》.pdf STAS 11170-1978 POWDER EGG-WHITE FOR LEATHER INDUSTRY《皮革工业的蛋白粉》.pdf
  • STAS 11171-1978 FOOTWEAR WITH METALIC TOE CAP Determination of toe impact resistance《有金属鞋头的鞋类 脚趾耐冲击的测定 》.pdf STAS 11171-1978 FOOTWEAR WITH METALIC TOE CAP Determination of toe impact resistance《有金属鞋头的鞋类 脚趾耐冲击的测定 》.pdf
  • STAS 11172-1979 LOW POWERS VARISTORS General technical requirement for quality《低变阻器一般质量技术要求 》.pdf STAS 11172-1979 LOW POWERS VARISTORS General technical requirement for quality《低变阻器一般质量技术要求 》.pdf
  • STAS 11173 1-1978 Silico-aluminous refractory mortars with chemical bindings SILICO-ALUMINOUS REFRACTORY MORTARS WITH SODIUM SILICATE《化学键联硅铝质耐火灰浆 》.pdf STAS 11173 1-1978 Silico-aluminous refractory mortars with chemical bindings SILICO-ALUMINOUS REFRACTORY MORTARS WITH SODIUM SILICATE《化学键联硅铝质耐火灰浆 》.pdf
  • STAS 11173 2-1981 Silico-aluminous refractory mortars with chemical binders SILICO-ALUMINOUS REFRACTORY ORTARS WITH ALUMINIU MONOPHOSPHATE《有化学粘结剂的硅铝耐火灰泥 有铝磷酸的硅铝耐火灰泥 》.pdf STAS 11173 2-1981 Silico-aluminous refractory mortars with chemical binders SILICO-ALUMINOUS REFRACTORY ORTARS WITH ALUMINIU MONOPHOSPHATE《有化学粘结剂的硅铝耐火灰泥 有铝磷酸的硅铝耐火灰泥 》.pdf
  • STAS 11174 1-1978 Antiblister and lubricating materials for steel pouring DETERMINATION OF FLOW POINT AND TIME OF DUSTS MELTING FOR STEEL POURING《钢浇注的防鼓泡和润滑材料 钢浇注熔化粉尘流动点和时间的测定 》.pdf STAS 11174 1-1978 Antiblister and lubricating materials for steel pouring DETERMINATION OF FLOW POINT AND TIME OF DUSTS MELTING FOR STEEL POURING《钢浇注的防鼓泡和润滑材料 钢浇注熔化粉尘流动点和时间的测定 》.pdf
  • STAS 11174 2-1978 Antiblistcr and lubricating materials for steel pouring DETERMINATION OF SINTERING MELTING AND FLOW POINT OF DUSTS FOR STEEL POURING《钢浇注的防鼓泡和润滑材料 钢浇注烧结、熔化和粉尘流动点的测.pdf STAS 11174 2-1978 Antiblistcr and lubricating materials for steel pouring DETERMINATION OF SINTERING MELTING AND FLOW POINT OF DUSTS FOR STEEL POURING《钢浇注的防鼓泡和润滑材料 钢浇注烧结、熔化和粉尘流动点的测.pdf
  • STAS 11174 3-1982 ANTIBLISTEU AND LUBHICATIX(i MATERIALS FOR STEEl POURING Determination of spreading surface of lubricating powders《钢的防水泡及润滑材料 浇注润滑粉涂覆面测定》.pdf STAS 11174 3-1982 ANTIBLISTEU AND LUBHICATIX(i MATERIALS FOR STEEl POURING Determination of spreading surface of lubricating powders《钢的防水泡及润滑材料 浇注润滑粉涂覆面测定》.pdf
  • STAS 11174 4-1982 ANTIBLISTER AND LUBRICATING MATERIALS FOR STEEL POURING Determination of powders bulk density for steel pouring《钢浇注防水泡和润滑材料 钢浇注粉末容重的测定 》.pdf STAS 11174 4-1982 ANTIBLISTER AND LUBRICATING MATERIALS FOR STEEL POURING Determination of powders bulk density for steel pouring《钢浇注防水泡和润滑材料 钢浇注粉末容重的测定 》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ASTM

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1