ASTM D5388-1993(2013) Standard Test Method for Indirect Measurements of Discharge by Step-Backwater Method《步进回水法间接测量放电的标准试验方法》.pdf

上传人:explodesoak291 文档编号:519656 上传时间:2018-12-03 格式:PDF 页数:4 大小:82.33KB
下载 相关 举报
ASTM D5388-1993(2013) Standard Test Method for Indirect Measurements of Discharge by Step-Backwater Method《步进回水法间接测量放电的标准试验方法》.pdf_第1页
第1页 / 共4页
ASTM D5388-1993(2013) Standard Test Method for Indirect Measurements of Discharge by Step-Backwater Method《步进回水法间接测量放电的标准试验方法》.pdf_第2页
第2页 / 共4页
ASTM D5388-1993(2013) Standard Test Method for Indirect Measurements of Discharge by Step-Backwater Method《步进回水法间接测量放电的标准试验方法》.pdf_第3页
第3页 / 共4页
ASTM D5388-1993(2013) Standard Test Method for Indirect Measurements of Discharge by Step-Backwater Method《步进回水法间接测量放电的标准试验方法》.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D5388 93 (Reapproved 2013)Standard Test Method forIndirect Measurements of Discharge by Step-BackwaterMethod1This standard is issued under the fixed designation D5388; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, th

2、e year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the computation of discharge ofwater in open channels or streams using representativ

3、e cross-sectional characteristics, the water-surface elevation of theupstream-most cross section, and coefficients of channelroughness as input to gradually-varied flow computations.21.2 This test method produces an indirect measurement ofthe discharge for one flow event, usually a specific flood. T

4、hecomputed discharge may be used to define a point on thestage-discharge relation.1.3 The values stated in inch-pound units are to be regardedas the standard. The SI units given in parentheses are forinformation only.1.4 This standard does not purport to address all of thesafety concerns, if any, as

5、sociated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3D1129 Terminology Relating to WaterD2777 Practice for D

6、etermination of Precision and Bias ofApplicable Test Methods of Committee D19 on WaterD3858 Test Method for Open-Channel Flow Measurementof Water by Velocity-Area Method3. Terminology3.1 Definitions:3.1.1 For definitions of terms used in this test method, referto Terminology D1129.3.2 Definitions of

7、 Terms Specific to This Standard:NOTESeveral of the following terms are illustrated in Fig.1.3.2.1 alpha ()a dimensionless velocity-head coefficientthat represents the ratio of the true velocity head to the velocityhead computed on the basis of the mean velocity. It is assumedequal to unity if the c

8、ross section is not subdivided. Forsubdivided sections, is computed as follows: 5(ki3ai2KT3AT2(1)where:k and a = the conveyance and area of the subsection indi-cated by the subscript i , andK and A = the conveyance and area of the total crosssection indicated by the subscript T.3.2.2 conveyance (K)a

9、 measure of the carrying capacity ofa channel without regard to slope and has dimensions of cubicfeet per second. Conveyance is computed as follows:K 51.49nAR2/3(2)3.2.3 cross-section area (A)the area at the water below thewater-surface elevation that it computed. The area is computedas the summatio

10、n of the products of mean depth multiplied bythe width between stations of the cross section.3.2.4 cross sections (numbered consecutively in downstreamorder)representative of a reach and channel and are posi-tioned as nearly as possible at right angles to the direction offlow. They must be defined b

11、y coordinates of horizontaldistance and ground elevation. Sufficient ground points mustbe obtained so that straight-line connection of the coordinateswill adequately describe the cross-section geometry.3.2.5 expansion or contraction loss (ho)in the reach iscomputed by multiplying the change in veloc

12、ity head throughthe reach by a coefficient. For an expanding reach:1This test method is under the jurisdiction of ASTM Committee D19 on Waterand is the direct responsibility of Subcommittee D19.07 on Sediments,Geomorphology, and Open-Channel Flow.Current edition approved Jan. 1, 2013. Published Janu

13、ary 2013. Originallyapproved in 1993. Last previous edition approved in 2007 as D5388 93 (2007).DOI: 10.1520/D5388-93R13.2Barnes, H. H., Jr., “Roughness Characteristics of Natural Streams,” U.S.Geological Survey Water Supply Paper 1849, 1967.3For referenced ASTM standards, visit the ASTM website, ww

14、w.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1ho 5

15、Kehv12 hv2!(3)and for a contracting reach:ho 5 Kchv22 hv1!(4)where:hv= velocity head at the respective section, andKe and Kc = coefficients.3.2.5.1 DiscussionThe values of the coefficients can rangefrom zero for ideal transitions to 1.0 for Ke and 0.5 for Kc forabrupt changes.3.2.6 fall (h)the drop

16、in the water surface, in ft (m),computed as the difference in the water-surface elevation atadjacent cross sections (see Fig. 1):h 5 h12 h2(5)3.2.7 friction loss (hf)the loss due to boundary friction inthe reach and is computed as follows:hf5LQ2K1K2(6)where:L = length of reach, feet (metres), andK =

17、 conveyance at the respective section.3.2.8 Froude number (F)an index to the state of flow inthe channel. In a prismatic channel, the flow is tranquil orsubcritical if the Froude number is less than unity and a rapidor supercritical if it is greater than unity. The Froude number iscomputed as follow

18、s:F 5V=gdm(7)where:V = the mean velocity, ft/s (m/s),dm = the mean depth in the cross section, feet, andg = the acceleration of gravity, ft/s/s (m/s/s).3.2.9 hydraulic radius (R)defined as the area of a crosssection or subsection divided by the corresponding wettedperimeter. The wetted perimeter is

19、the distance along theground surface of a cross section or subsection.3.2.10 Mannings equationMannings equation for com-puting discharge for gradually-varied flow is:Q 51.49nAR2/3Sf1/2(8)where:Q = discharge, ft3/s (m3/s),n = Mannings roughness coefficient,A = cross-section area, ft2(m2),R = hydrauli

20、c radius, ft, (m), andSf= friction slope, ft/ft (m/m).3.2.11 roughness coeffcient (n)or Mannings n is used inthe Manning equation. Roughness coefficient or Mannings n isa measure of the resistance to flow in a channel. The factorsthat influence the magnitude of the resistance to flow includethe char

21、acter of the bed material, cross-section irregularities,depth of flow, vegetation, and channel alignment. A reasonableevaluation of the resistance to flow in a channel depends on theexperience of the person selecting the coefficient and referenceto texts and reports that contain values for similar s

22、tream andflow conditions (see 10.3).3.2.12 velocity head (hv)in ft(m), compute velocity headas follows:hv5V22g(9)where: = velocity-head coefficient,V = the mean velocity in the cross section, ft/s (m/s), andg = the acceleration of gravity, ft/s/s (m/s/s).4. Summary of Test Method4.1 The step-backwat

23、er test method is used to indirectlydetermine the discharge through a reach of channel. Thestep-backwater test method needs only one high-water eleva-tion and that being at the upstream most cross section. A fieldsurvey is made to define cross sections of the stream anddetermine distances between th

24、em. These data are used tocompute selected properties of the section. The information isused along with Mannings n to compute the change inwater-surface elevation between cross sections. For one-dimensional and steady flow the following equation is writtenfor the sketch shown in Fig. 1:h15 h21hv21hf

25、1ho 2 hv1(10)where:h = elevation of the water surface above a common datumat the respective sections,hf = the loss due to boundary friction in the reach, andho = the energy loss due to deceleration or acceleration ofthe flow (in the downstream direction) in an expand-ing or contracting reach.FIG. 1

26、Definition Sketch of Step-Backwater ReachD5388 93 (2013)25. Significance and Use5.1 This test method is particularly useful for determiningthe discharge when it cannot be measured directly (such asduring high flow conditions) by some type of current meter toobtain velocities and with sounding weight

27、s to determine thecross section (refer to Test Method D3858). This test methodrequires only one high-water elevation, unlike the slope-areatest method that requires numerous high-water marks to definethe fall in the reach. It can be used to determine a stage-discharge relation without needing data f

28、rom several high-water events.5.1.1 The user is encouraged to verify the theoreticalstage-discharge relation with direct current-meter measure-ments when possible.5.1.2 To develop a rating curve, plot stage versus dischargefor several discharges and their computed stages on a ratingcurve together wi

29、th direct current-meter measurements.6. Interferences6.1 The cross sections selected should be typical and rep-resentative of the reach half way to each adjacent cross section.If there are abrupt changes between adjacent cross sections, theresults could be suspect. The ratio of the conveyance to the

30、conveyance at an adjacent cross section should stay within 0.7and 1.4.6.2 Care must be taken in selecting the water-surfaceelevation for the downstream cross section. It should not be sohigh that it would reflect backwater at the upstream crosssection or so low that it would be in super-critical flo

31、w. A goodrule of thumb is to select a stage so that the conveyance of thedownstream cross section is approximately equal to the con-veyance of the upstream-most cross section.6.3 The only way to be certain that the water-surfaceelevation is not too high or too low or that the reach issufficiently lo

32、ng enough or that enough cross sections are used,or all of the above, is to use the converging profile method. Inthis method, several profiles are developed using a range ofstarting water-surface elevations. The slope of the profiles fromthe higher starting elevations should increase as you move ina

33、n upstream direction. The slope of the profiles from the lowerstarting elevations should decrease as you move in an upstreamdirection. At some distance upstream, the profiles will con-verge.6.4 A minimum of about ten cross sections are needed todevelop a smooth backwater curve.7. Apparatus7.1 The eq

34、uipment generally used for a “transit-stadia”survey is recommended. An engineers transit, a self-levelinglevel with azimuth circle, newer equipment using electroniccircuitry, or other advanced surveying instruments may beused. Standard level rods, a telescoping 25-ft (7.62-m) levelrod, rod levels, h

35、ead levels, steel and metallic tapes, tag lines(small wires with markers fixed at known spacings), vividlycolored flagging, survey stakes, a camera (preferably stereo)with built-in light meter with color film, and ample note paperare necessary items.7.2 Additional equipment that may expedite a surve

36、y in-cludes axes, machetes, a boat with oars and motor, hip boots,waders, rain gear, sounding equipment, and two-way radios.7.3 Safety equipment should include life jackets, first aidkit, drinking water, and pocket knives.8. Sampling8.1 Sampling as defined in Terminology D1129 is notapplicable in th

37、is test method.9. Calibration9.1 Check the surveying instruments, levels, transits, etc.adjustments before each use, and possibly daily when incontinuous use, or after some occurrence that may haveaffected the adjustment.9.2 The standard check is the two-peg or double-peg test. Ifthe error is over 0

38、.03 ft in 100 ft (0.009 m in 30.4 m), adjustinstrument. The two-peg test and how to adjust the instrumentare described in many surveying textbooks and in instructionsprovided by the manufacturer. Refer to manufacturers manualfor the electronic instruments.9.3 If the reciprocal leveling technique is

39、used in the survey,it is the equivalent of the two-peg test between each of the twosuccessive hubs.9.4 Check sectional and telescoping level rods visually atfrequent intervals to be sure sections are not separated. Aproper fit at each joint can be quickly checked by measure-ments across the joint wi

40、th a steel tape.9.5 Check all field notes of the transit-stadia survey beforeproceeding with the computations.10. Procedure10.1 Selection of a reach of channel is the first and probablythe most important step to obtain reliable results. Ideal reachesrarely exist; thus the various elements in a reach

41、 must beevaluated and compromises made so that the best reachavailable is selected. This test method requires that the reach bemuch longer than a reach using the slope-area test method.10.2 The reach of the channel should be as uniform aspossible. Changes in channel conveyance should be fairlyunifor

42、m from section to section. Avoid abrupt changes inchannel shape because of uncertainties regarding the value ofthe expansion/contraction loss coefficient and the frictionlosses in the reach.10.3 A reach with flow confined to a roughly trapezoidalchannel is desirable because roughness coefficients ha

43、ve beendetermined for such shapes. However, compound channels,those with overbank flow, for example, can be used if they areproperly subdivided into sub-areas that are approximatelytrapezoidal.10.4 The reach should be long enough to develop a fall thatis approximately equal to half of the average de

44、pth.10.5 Cross sections represent the geometry of a reach ofchannel. For example, a section should be typical of the reachfrom halfway to the next section upstream to halfway to theD5388 93 (2013)3next section downstream. A minimum of about ten crosssections is recommended.10.6 The roughness coeffic

45、ient, n , is assigned to a crosssection or to subdivisions of a section, but the n selected shouldrepresent conditions in the reach for which the section istypical. Most texts on hydraulics give techniques of determin-ing values of n. One particularly helpful reference usesphotographs and descriptiv

46、e stream-channel data to describevalues of n3. Cowan developed a procedure for estimating theeffects of these factors to determine the value of n for achannel.411. Interpretation of Results11.1 Compute the discharge by trial and error. The dischargeand a water-surface elevation at the downstream mos

47、t crosssection are assumed. A good water-surface elevation for thedownstream most cross section is the given water-surfaceelevation at the upstream most cross section and to adjust it forthe natural slope of the stream. Compute a backwater profile bystarting at the downstream-most cross section and

48、progressingupstream to the upstream-most cross section.5Compute awater-surface elevation for each cross section.11.2 Compute the water-surface elevation for the first crosssection upstream from the downstream-most cross section.Compute this water-surface elevation using the equations in4.1. This com

49、putation is done by trial and error. A water-surface elevation is first assumed for this section. With theassumed elevation, compute the area, conveyance, and othersection properties. Use these values in the equations in 4.1 tocompute the change in water-surface elevation between thissection and the downstream-most cross section. Using thischange in water-surface elevation, compute an elevation forthis cross section. The computed elevation should be the sameas the assumed elevation for the section properties to becorrect. When the water-surface ele

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1