1、Designation: D 5600 04e1An American National StandardStandard Test Method forTrace Metals in Petroleum Coke by Inductively CoupledPlasma Atomic Emission Spectrometry (ICP-AES)1This standard is issued under the fixed designation D 5600; the number immediately following the designation indicates the y
2、ear oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.e1NOTETable 2 and 14.1 were updated editorially in August 2006.1
3、. Scope*1.1 This test method covers the analysis for commonlydetermined trace metals in test specimens of raw and calcinedpetroleum coke by inductively coupled plasma atomic emis-sion spectroscopy.1.2 Elements for which this test method is applicable arelisted in Table 1. Detection limits, sensitivi
4、ty, and optimumranges of the metals will vary with the matrices and model ofspectrometer.1.3 This test method is applicable only to samples contain-ing less than one mass % ash.1.4 Elements present at concentrations above the upper limitof the working ranges can be determined with additional,appropr
5、iate dilutions.1.5 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard t
6、o establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 346 Practice for Collection and Preparation of CokeSamples for Laboratory AnalysisD 1193 Specification for Reagent WaterE11 Specif
7、ication for Wire Cloth and Sieves for TestingPurposes3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 gross samplethe original, uncrushed, representativeportion taken from a shipment or lot of coke.3.1.2 ICP-AESInductively Coupled PlasmaAtomicEmission Spectrometry.3.1.3 petrole
8、um cokea solid, carbonaceous residue pro-duced by thermal decomposition of heavy petroleum fractionsand cracked stocks.4. Summary of Test Method4.1 A test sample of the petroleum coke is ashed at 700C.The ash is fused with lithium borate. The melt is dissolved indilute hydrochloric acid (HCl), and t
9、he resultant solution isanalyzed by inductively coupled plasma atomic emissionspectrometry (ICP-AES) using simultaneous, or sequentialmultielemental determination of elements. The solution isintroduced to the ICP instrument by free aspiration or by anoptional peristaltic pump. The concentrations of
10、the tracemetals are then calculated by comparing the emission intensi-ties from the sample with the emission intensities of thestandards used in calibration.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of Subco
11、mmitteeD02.03 on Elemental Analysis.Current edition approved Nov. 1, 2004. Published November 2004. Originallyapproved in 1994. Last previous edition approved in 2003 as D 560098(2003).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceast
12、m.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.TABLE 1 Elements Determined and Suggested WavelengthsElement Wavelengths, nmA,BConcentrationRange, mg/kgCAluminum 237.313, 256.799, 308.216, 396.152 15110Barium 455.403, 493.41
13、0 165Calcium 317.933, 393.367, 396.847 10140Iron 259.940 40700Magnesium 279.079, 279.553 550Manganese 257.610, 294.920 17Nickel 231.604, 241.476, 352.454 3220Silicon 212.412, 251.611, 288.159 60290Sodium 588.995, 589.3, 589.592 30160Titanium 334.941, 337.280 17Vanadium 292.402 2480Zinc 202.548, 206.
14、200, 213.856 120AThe wavelengths listed were utilized in the round robin because of theirsensitivity. Other wavelengths can be substituted if they can provide the neededsensitivity and are treated with the same corrective techniques for spectralinterference (see 6.1). In time, other elements may be
15、added as more informationbecomes available and as required.BAlternative wavelengths can be found in references such as “InductivelyCoupled Plasma Atomic Emission Spectroscopy,” Winge, R. K., Fassel, V. A.,Peterson, V. J., and Floyd, M. A., Elsevier, 1985.CBased on this round robin study. This test m
16、ethod can be applicable to otherelements or concentration ranges but precision data is not available.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5. Significance an
17、d Use5.1 The presence and concentration of various metallicelements in a petroleum coke are major factors in determiningthe suitability of the coke for various end uses. This testmethod provides a means of determining the concentrations ofthese metallic elements in a coke sample.5.2 The test method
18、provides a standard procedure for useby buyer and seller in the commercial transfer of petroleumcoke to determine whether the petroleum coke meets thespecifications of the purchasing party.6. Interferences6.1 SpectralFollow the instrument manufacturers oper-ating guide to develop and apply correctio
19、n factors to compen-sate for the interferences. To apply interference corrections, allconcentrations shall be within the previously established linearresponse range of each element.6.2 Spectral interferences are caused by: (1) overlap of aspectral line from another element; (2) unresolved overlap of
20、molecular band spectra; (3) background contribution fromcontinuous or recombination phenomena; and (4) stray lightfrom the line emission of high-concentration elements. Spec-tral overlap can be compensated for by computer-correcting theraw data after monitoring and measuring the interfering ele-ment
21、. Unresolved overlap requires selection of an alternatewavelength. Background contribution and stray light canusually be compensated for by a background correction adja-cent to the analyte line.6.3 Physical interferences are effects associated with thesample nebulization and transport processes. Cha
22、nges in vis-cosity and surface tension can cause significant inaccuracies,especially in samples containing high dissolved solids or highacid concentrations. If physical interferences are present, theyshall be reduced by diluting the sample, by using a peristalticpump, or by using the standard additi
23、ons method. Anotherproblem that can occur with high dissolved solids is saltsbuildup at the tip of the nebulizer, which can affect aerosol flowrate and cause instrumental drift. This problem can be con-trolled by wetting the argon prior to nebulization, using a tipwasher, or diluting the sample.7. A
24、pparatus7.1 Balance, top loading, with automatic tare, capable ofweighing to 0.0001 g, 150 g capacity.7.2 Ceramic Cooling Plate, desiccator plates have beenfound effective.7.3 Crucible Support, nichrome wire triangles.7.4 Furnaces, electric, capable of regulation of temperatureat 700 6 10C and 1000
25、6 10C, with allowances forexchange of combustion gases and air.7.5 Inductively Coupled Plasma Atomic EmissionSpectrometerEither sequential or simultaneous spectrometeris suitable.7.6 Magnetic Stirring Bars, polytetrafluoroethylene (PTFE)coated, approximately 12 mm (12 in.) in length.7.7 Magnetic Sti
26、rring Hot Plate.7.8 Meker Type Forced Air Burner.7.9 NebulizerA high-solids nebulizer is strongly recom-mended. This type of nebulizer reduces the possibility ofclogging and minimizes aerosol particle effects.7.10 Peristaltic PumpA peristaltic pump is strongly rec-ommended to provide a constant flow
27、 of solution.7.11 Platinum Dish, 50 to 58 mL capacity.7.12 Platinum Dish, 100 to 200 mL capacity.7.13 Platinum-tipped Tongs.7.14 Ring Stand, with crucible support.7.15 Sieves, 0.250 mm (No. 60) and 0.075 mm (No. 200),conforming to Specification E11.7.16 Tungsten Carbide Mill, laboratory size.7.17 Va
28、cuum Filtration Apparatus.7.18 Filter Paper, sized to fit vacuum filtration apparatus,fine porosity, slow flow rate, 2.5 micron particle retention.8. Reagents8.1 Purity of ReagentsReagent-grade chemicals shall beused in all tests. It is intended that all reagents shall conform tothe specifications o
29、f the Committee on Analytical Reagents ofthe American Chemical Society where such specifications areavailable.3Other grades may be used, provided it is firstascertained that the reagent is of sufficiently high purity topermit its use without lessening the accuracy of the determi-nation.8.2 Purity of
30、 WaterUnless otherwise indicated, referencesto water shall be understood to mean Type II reagent water asdefined in Specification D 1193.8.3 Argon Gas Supply, welding grade.8.4 Lithium Borate, either, or a blend containing both.8.4.1 Lithium Metaborate (LiBO2), powder (high purity).8.4.2 Lithium Tet
31、raborate (Li2B4O7), powder (high purity).8.5 Solution No. 1, Hydrochloric Acid, 20 % by volume(400 mL of concentrated HCl diluted to 2000 mL with water).8.6 Solution No. 2, Standard and Sample Solution Additive.Weigh 20.0 6 0.1 g of lithium borate into a 100 to 200 mLplatinum dish. Place in a furnac
32、e at 1000C for 5 min to fuseto a liquid. Remove and cool. Place the cooled platinum dishcontaining the fused recrystallized lithium borate and a mag-netic stirring bar into a 2-L glass beaker. Add 1000 mL ofSolution No. 1 (20 % HCl). Heat gently and stir the solution ona magnetic stirring hot plate
33、until the lithium borate completelydissolves. After dissolution, remove the platinum dish with aglass rod. Rinse the platinum dish and glass rod with water intothe lithium borate solution. Immediately transfer the warmsolution quantitatively to a 2-L volumetric flask. Dilute toabout 1800 mL with wat
34、er to avoid crystallization. Mix thesolution and cool to room temperature. Dilute to volume withwater, mix thoroughly, and vacuum-filter the entire solutionthrough filter paper.NOTE 1Fifty millilitres of Solution No. 2 contains exactly 0.5 glithium borate and 25 mL Solution No. 1.3Reagent Chemicals,
35、 American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Analar Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Form
36、ulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.D560004e128.7 Standard Stock SolutionsPrepare standard stock solu-tions from high purity (99.9 % or better) metals, oxides, orsalts. Stock solutions of 1000 g/mL (ppm) for each metal areneeded for preparation of dilute standards in the
37、range from1.0 to 50 g/mL (ppm).NOTE 2To minimize the potential of contamination, prepare theplatinum ware by boiling in dilute HCl (5 volume % HCl + 95 volume %water) and rinsing thoroughly with water. After this initial cleaning,handle the platinum ware with clean platinum tipped tongs and protectf
38、rom all sources of contamination. Similarly acid clean all glassware usedin the analyses.NOTE 3Commercially available standards and other reagents solu-tions may be used in place of laboratory preparations.9. Sample Preparation9.1 Crush and divide the gross sample to obtain a laboratoryanalysis samp
39、le. Crush to pass a 0.250 mm (No. 60) sieveusing Practice D 346.9.2 Use a tungsten carbide mill to crush approximately a 30g representative portion of the minus 0.250 mm (No. 60) sieveanalysis sample, as prepared in 9.1, to pass through a 0.075 mm(No. 200) sieve. Dry this sample to constant mass at
40、110 to115C and store in a desiccator until cool and needed for theanalysis.9.2.1 Preparation of the minus 0.075 mm analysis samples,from the minus 0.250 mm analysis samples, shall neitherremove metals through loss nor increase metals throughcontamination. Full dissolution of the ash is required.10.
41、Preparation of Apparatus10.1 ICP-AES InstrumentConsult the manufacturers in-structions for operation of the inductively coupled plasmaatomic emission spectrometer.10.2 Peristaltic PumpWhen a peristaltic pump is used,inspect the pump tubing and replace it, as necessary, beforestarting each day. Verif
42、y the solution uptake rate and adjust itto the desired rate.10.3 ICP Excitation SourceInitiate the plasma source atleast 30 min before performing the analysis. Some manufac-turers recommend even longer warm-up periods.10.4 Wavelength ProfilingPerform any wavelength profil-ing that is required in the
43、 normal operation of the instrument.10.5 Operating ParametersAssign the appropriate oper-ating parameter to the instrument task file so that the desiredelements can be determined. Parameters to be included areelement, wavelength, background correction points (optional),inter-element correction facto
44、rs (optional), integration time,and internal standard correction (optional).10.6 Each analyst shall determine the sensitivity and linearrange of calibration of their own equipment and chooseconcentration ranges for standards compatible with the samplesand instrument specific to their own work. Sampl
45、e dilutionscan be required for the determination of some elements (see11.6).10.7 The linear response range shall be established for eachparticular instrument being used. This is accomplished byrunning intermediate standards between the blank and thecalibration standard and by running standards conta
46、ininghigher concentrations than the calibration standard within thelinear range of response.11. Procedure11.1 Weigh 5 g (to 0.1 mg) of the dried petroleum cokeprepared in Section 9 into a labeled 50 to 58 mL platinum dish.11.2 Place the platinum dish in a cold muffle furnace andheat directly to 700
47、6 10C until all carbonaceous matter isremoved. Transfer the platinum dish to a desiccator and cool toroom temperature.11.3 To convert the ash into a solution, weigh, on ananalytical balance, onto a tared weighing paper, 0.5 g(60.0005 g) of lithium borate powder. Sprinkle the lithiumborate evenly ove
48、r the ash. Use platinum tipped tongs to placethe platinum dish into a muffle furnace at 1000 6 10C for oneor two minutes. Use the platinum-tipped tongs to gently swirlthe melt to dissolve the ash. Continue heating in the furnace fortwo to three minutes or until a clear, transparent melt isobtained.1
49、1.3.1 The ideal fusion after cooling will look like clearglass inside the platinum dish. An opaque melt possiblyindicates poor fusion and some of the ash can remain insolubleduring the dissolution step. Full dissolution of the ash isrequired.11.3.2 If a 1000 6 10C furnace is not available, the fusioncan be performed using a Meker type burner as follows. Placethe platinum dish onto the crucible support resting on a ringstand over the burner and adjust the forced air gas flame so thatthe lithium borate melts in about 30 s. Using platinum-tippe