ASTM D6342-2012 6429 Standard Practice for Polyurethane Raw Materials Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy《聚氨基甲酸乙酯原料的标准实施规程 利用近红外(NIR)光谱法测定多元醇.pdf

上传人:bonesoil321 文档编号:522228 上传时间:2018-12-03 格式:PDF 页数:9 大小:114.66KB
下载 相关 举报
ASTM D6342-2012 6429 Standard Practice for Polyurethane Raw Materials Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy《聚氨基甲酸乙酯原料的标准实施规程 利用近红外(NIR)光谱法测定多元醇.pdf_第1页
第1页 / 共9页
ASTM D6342-2012 6429 Standard Practice for Polyurethane Raw Materials Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy《聚氨基甲酸乙酯原料的标准实施规程 利用近红外(NIR)光谱法测定多元醇.pdf_第2页
第2页 / 共9页
ASTM D6342-2012 6429 Standard Practice for Polyurethane Raw Materials Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy《聚氨基甲酸乙酯原料的标准实施规程 利用近红外(NIR)光谱法测定多元醇.pdf_第3页
第3页 / 共9页
ASTM D6342-2012 6429 Standard Practice for Polyurethane Raw Materials Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy《聚氨基甲酸乙酯原料的标准实施规程 利用近红外(NIR)光谱法测定多元醇.pdf_第4页
第4页 / 共9页
ASTM D6342-2012 6429 Standard Practice for Polyurethane Raw Materials Determining Hydroxyl Number of Polyols by Near Infrared (NIR) Spectroscopy《聚氨基甲酸乙酯原料的标准实施规程 利用近红外(NIR)光谱法测定多元醇.pdf_第5页
第5页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D6342 12Standard Practice forPolyurethane Raw Materials: Determining Hydroxyl Numberof Polyols by Near Infrared (NIR) Spectroscopy1This standard is issued under the fixed designation D6342; the number immediately following the designation indicates the year oforiginal adoption or, in th

2、e case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This standard covers a practice for the determination ofhydroxyl numbers of polyols u

3、sing NIR spectroscopy.1.2 Definitions, terms, and calibration techniques are de-scribed. Procedures for selecting samples, and collecting andtreating data for developing NIR calibrations are outlined.Criteria for building, evaluating, and validating the NIRcalibration model are also described. Final

4、ly, the procedure forsample handling, data gathering and evaluation are described.1.3 The implementation of this standard requires that theNIR spectrometer has been installed in compliance with themanufacturers specifications.1.4 The values stated in SI units are to be regarded asstandard. No other

5、units of measurement are included in thisstandard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of r

6、egulatory limitations prior to use.NOTE 1This standard is equivalent ISO 15063.2. Referenced Documents2.1 ASTM Standards:2D883 Terminology Relating to PlasticsD4274 Test Methods for Testing Polyurethane Raw Materi-als: Determination of Hydroxyl Numbers of PolyolsD4855 Practice for Comparing Test Met

7、hods (Withdrawn2008)3E131 Terminology Relating to Molecular SpectroscopyE168 Practices for General Techniques of Infrared Quanti-tative AnalysisE222 Test Methods for Hydroxyl Groups Using AceticAnhydride AcetylationE275 Practice for Describing and Measuring Performance ofUltraviolet and Visible Spec

8、trophotometersE456 Terminology Relating to Quality and StatisticsE1655 Practices for Infrared Multivariate QuantitativeAnalysisE1899 Test Method for Hydroxyl Groups Using Reactionwith p-Toluenesulfonyl Isocyanate (TSI) and Potentiomet-ric Titration with Tetrabutylammonium Hydroxide2.2 ISO Standard:I

9、SO 15063 PlasticsPolyols for use in the production ofpolyurethanesDetermination of hydroxyl number byNIR spectroscopy3. Terminology3.1 DefinitionsTerminology used in this practice followsthat defined in Terminology D883. For terminology related tomolecular spectroscopy methods, refer to Terminology

10、E131.For terms relating to multivariate analysis, refer to PracticeE1655.3.2 Definitions of Terms Specific to This Standard:3.2.1 hydroxyl numberthe milligrams of potassium hy-droxide equivalent to the hydroxyl content of1gofsample.4. Summary of Practice4.1 Multivariate mathematics is applied to cor

11、relate the NIRabsorbance values for a set of calibration samples to therespective reference hydroxyl number for each sample. Theresultant multivariate calibration model is then applied to theanalysis of unknown samples to provide an estimate of theirhydroxyl numbers.4.2 Multilinear regression (MLR),

12、 principal componentsregression (PCR), and partial least squares regression (PLS)are the mathematical techniques used for the development ofthe calibration model.4.3 Statistical tests are used to detect outliers during thedevelopment of the calibration model. Outliers can include1This practice is un

13、der the jurisdiction ofASTM Committee D20 on Plastics andis the direct responsibility of Subcommittee D20.22 on Cellular Materials - Plasticsand Elastomers.Current edition approved Aug. 1, 2012. Published September 2012. Originallyapproved in 1998. Last previous edition approved in 2008 as D6342 - 0

14、8. DOI:10.1520/D6342-12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this hi

15、storical standard is referenced onwww.astm.org.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1high leverage samples and samples whose hydroxyl numbersare inconsistent w

16、ith the model.4.4 Validation of the calibration model is performed byusing the model to analyze a set of validation samples. Thehydroxyl number estimates for the validation set are statisti-cally compared to the reference hydroxyl number for this set totest for agreement of the model with the refere

17、nce method.4.5 Statistical expressions are given for calculating theprecision and bias of the NIR method relative to the referencemethod.5. Significance and Use5.1 General Utility:5.1.1 It is necessary to know the hydroxyl number ofpolyols in order to formulate polyurethane systems.5.1.2 This practi

18、ce is suitable for research, quality control,specification testing, and process control.5.2 Limitations:5.2.1 Factors affecting the NIR spectra of the analytepolyols need to be determined before a calibration procedure isstarted. Chemical structure, interferences, any nonlinearities,the effect of te

19、mperature, and the interaction of the analyte withother sample components such as catalyst, water and otherpolyols needs to be understood in order to properly selectsamples that will model those effects which cannot be ad-equately controlled.5.2.2 Calibrations are generally considered valid only for

20、the specific NIR instrument used to generate the calibration.Using different instruments (even when made by the samemanufacturer) for calibration and analysis can seriously affectthe accuracy and precision of the measured hydroxyl number.Procedures used for transferring calibrations between instru-m

21、ents are problematic and are to be utilized with cautionfollowing the guidelines in Section 16. These proceduresgenerally require a completely new validation and statisticalanalysis of errors on the new instrument.5.2.3 The analytical results are statistically valid only for therange of hydroxyl num

22、bers used in the calibration. Extrapola-tion to lower or higher hydroxyl values can increase the errorsand degrade precision. Likewise, the analytical results are onlyvalid for the same chemical composition as used for thecalibration set.Asignificant change in composition or contami-nants can also a

23、ffect the results. Outlier detection, as discussedin Practices E1655, is a tool that can be used to detect thepossibility of problems such as those mentioned above.6. Instrumentation6.1 IntroductionA complete description of all applicabletypes of NIR instrumentation is beyond the scope of thisstanda

24、rd. Only a general outline is given here. A diagram of atypical NIR spectrometer is shown in Fig. 1.6.2 Light Source and DetectorTungsten-halogen lampswith quartz envelopes usually serve as the energy sources forNIR instruments. Most of the detectors used for NIR aresolid-state semiconductors. PbS,

25、PbSe, and InGaAs detectorsare most commonly used.6.3 Light DispersionSpectrophotometers can be classifiedbased on the procedure by which the instrument accomplisheswavelength selection.6.3.1 Monochromator InstrumentGrating monochromatorinstruments, often called “dispersive” instruments, are com-monl

26、y used in the laboratory and for process applications. In ahalographic grating system, the grating is rotated so that onlya narrow band of wavelengths is transmitted to a singledetector at a given time.6.3.2 Filter-Wheel InstrumentIn this type of NIRinstrument, one or several narrow band filters are

27、 mounted ona turret wheel so that the individual wavelengths are presentedto a single detector sequentially.6.3.3 Acoustic Optic Tunable Filter (AOTF) InstrumentTheAOTF is a continuous variant of the fixed-filter photometerwith no moving optical parts for wavelength selection. Abirefringent TeO2crys

28、tal is used in a noncollinear configura-tion in which acoustic and optical waves move through thecrystal at different angles. Variations in the acoustic frequencycause the crystal lattice spacing to change. That in turn causesthe crystal to act as a variable transmission diffraction gratingfor one w

29、avelength. The main advantage of using AOTFinstruments is the speed. A wavelength or an assembly ofwavelengths can be changed hundreds of times per secondunder computer control.6.3.4 Light-Emitting Diode (LED) InstrumentEach wave-length band is produced by a different diode. The majoradvantages of t

30、he system are its small size and compactness,stability of construction with no moving parts, and low powerconsumption.6.3.5 Fourier Transfer (FT) InstrumentIn FT-NIRinstruments, the light is divided into two beams whose relativepaths are varied by use of a moving optical element. The beamsare recomb

31、ined to produce an interference pattern that containsall of the wavelengths of interest. The interference pattern ismathematically converted into spectral data using Fouriertransform. FT interferometer optics provide complete spectrawith very high wavelength resolution. FT signal averaging alsoprovi

32、des higher signal-to-noise ratios in general than can beachieved with other types of instruments.6.4 Sampling SystemDepending upon the applications,several different sampling systems can be used in the labora-tory or for on-line instruments, or both.6.4.1 CuvetteQuartz or glass cuvettes with fixed o

33、r adjust-able pathlengths can be used in the laboratory.6.4.2 Flow-Through CellThis type of cell can be used forcontinuous or intermittent monitoring of liquid sample.6.4.3 Probes:FIG. 1 Schematic of a Near-IR SystemD6342 1226.4.3.1 Transmission ProbeTransmission probes com-bined with optic fibers a

34、re ideal for analyzing clear liquids,slurries, suspensions, and other high viscosity samples. Lowabsorptivity in the NIR region permits sampling pathlengths ofup to 10 cm.6.4.3.2 Immersion ProbeThe immersion system uses abi-directional optic fiber bundle and variable pathlength probefor sample measu

35、rements. Radiation from the source is trans-mitted to the sample by the inner ring of fibers, and diffusetransmitted radiation is collected by the outer ring of fibers fordetection.6.4.3.3 Attenuated Total Reflection (ATR) ProbeAttenuated total reflection occurs when an absorbing medium(the sample)

36、is in close contact with the surface of a crystalmaterial of higher refractive index. At an optimized angle, theNIR beam reflects internally along the crystal faces, penetrat-ing a few microns into the sample surface, where selectiveabsorption occurs. The resulting spectrum is very close to theconve

37、ntional transmission spectrum for the sample. There aremany designs of ATR plates and rods for specific applications.Single or multiple reflection units are available. ATR samplingaccessories are available for the laboratory and, in the form offiber optic probes, can be used for on-line analysis. Th

38、is is anadvantage when handling viscous liquids and highly absorbingmaterials.6.5 SoftwareThe ideal software has the following capa-bilities:6.5.1 The capability to record all sample identification andspectral data accurately and to access the reference data,6.5.2 The capability to record the date a

39、nd time of day thatall spectra and files were recorded or created,6.5.3 The capability to move or copy spectra, or both, fromfile to file,6.5.4 The capability to add or subtract spectral data, and toaverage spectra,6.5.5 The capability to perform transformations of log l/Roptical data into derivativ

40、es, or other forms of mathematicaltreatment, and to reverse the transformation,6.5.6 The capability to compute multiple linear regression(MLR), principal component regression (PCR), and partialleast squares regression (PLS),6.5.7 The capability to store PCR or PLS loading, weights,scores or other de

41、sirable data, and to display these data forsubsequent examination and interpretation,6.5.8 The capability to enable the operator to evaluate thecalibration model by computing the standard error of validation(SEV), coefficient of regression, and the root mean squaredeviation (RMSD), and to display va

42、rious plots,6.5.9 The capability to perform cross-validationautomatically,6.5.10 The capability to identify an outlier(s), and6.5.11 The capability to develop and save regressionequations and analyze a sample to calculate a hydroxylnumber.6.6 Software PackagesMost NIR instruments providenecessary so

43、ftware for collecting and modeling data. Severalnon-instrumental companies also supply chemometric softwarepackages that can be used to analyze NIR data.7. Near-IR Spectral Measurements7.1 NIR spectral measurements are based on Beers law,namely, the absorbance of a homogeneous sample containingan ab

44、sorbing substance is linearly proportional to the concen-tration of the absorbing species. The absorbance of a sample isdefined as the logarithm to the base ten of the reciprocal of theTransmittance (T):A 5 log101/T! (1)where:T = the ratio of radiant power transmitted by the sample tothe radiant pow

45、er incident on the sample.7.1.1 For most types of instrumentation, the radiant powerincident on the sample cannot be measured directly. Instead, areference (background) measurement of the radiant power ismade without the sample being present in the light beam.7.1.2 A measurement is then conducted wi

46、th the samplepresent, and the ratio, T, is calculated. The backgroundmeasurement can be conducted in a variety of ways dependingon the application and instrumentation. The sample and itsholder can be physically removed from the light beam and abackground measurement made on the “empty beam”. Thesamp

47、le holder (cell) can be emptied, and a backgroundmeasurement taken for the empty cell. The cell can be filledwith a material that has minimal absorption in the spectralrange of interest, and the background measurement taken.Alternatively, the light beam may be split or alternately passedthrough the

48、sample and through an empty beam, and emptycell, or a background material in the cell.7.1.3 The particular background referencing scheme that isused can vary among instruments, and among applications. Thesame sample background referencing scheme must be em-ployed for the measurement of all spectra o

49、f calibrationsamples, validation samples, and unknown samples to beanalyzed. Any differences between instrument conditions usedfor referencing and measurement are to be minimized.7.2 Traditionally, a sample is manually brought to theinstrument and placed in a suitable optical container (a cell,vial, or cuvette with windows that transmit in the region ofinterest). Alternatively, transfer pipes can continuously flowliquid through an optical cell in the instrument for continuousanalysis. With optical fibers, the sample can be analyzedremotely from the instrument.

展开阅读全文
相关资源
猜你喜欢
  • AECMA PREN 3095-1997 Aerospace Series Test Method for Sealants Determination of Extended Assembly Time《航空航天系列密封剂 试验方法 延长装配时间的确定》.pdf AECMA PREN 3095-1997 Aerospace Series Test Method for Sealants Determination of Extended Assembly Time《航空航天系列密封剂 试验方法 延长装配时间的确定》.pdf
  • AECMA PREN 3095-1998 Aerospace Series Sealants Test Method Determination of Extended Assembly Time Edition P 1《航空航天系列密封剂 试验方法 延长装配时间的确定》.pdf AECMA PREN 3095-1998 Aerospace Series Sealants Test Method Determination of Extended Assembly Time Edition P 1《航空航天系列密封剂 试验方法 延长装配时间的确定》.pdf
  • AECMA PREN 3096-1989 Aerospace Series Sealants Test Method Determination of Tack-Free Time《航空航天系列无钉时间密封剂 试验方法》.pdf AECMA PREN 3096-1989 Aerospace Series Sealants Test Method Determination of Tack-Free Time《航空航天系列无钉时间密封剂 试验方法》.pdf
  • AECMA PREN 3096-1995 Aerospace Series Sealants Test Method Determination of Tack-Free Time Edition P 1《航空航天系列无钉时间密封剂 试验方法.P1版》.pdf AECMA PREN 3096-1995 Aerospace Series Sealants Test Method Determination of Tack-Free Time Edition P 1《航空航天系列无钉时间密封剂 试验方法.P1版》.pdf
  • AECMA PREN 3101-1997 Aerospace Series Non-Metallic Materials Sealants Test Method Determination of Resistance to Thermal Rupture Edition P 1《航空航天系列非金属物质对热破裂的抵抗密封试验方法.P1版》.pdf AECMA PREN 3101-1997 Aerospace Series Non-Metallic Materials Sealants Test Method Determination of Resistance to Thermal Rupture Edition P 1《航空航天系列非金属物质对热破裂的抵抗密封试验方法.P1版》.pdf
  • AECMA PREN 3102-2000 Aerospace Series Sealants Test Methods Determination of Low-Temperature Flexibility Edition P 1《航空航天系列密封剂 试验方法 低温挠性的确定》.pdf AECMA PREN 3102-2000 Aerospace Series Sealants Test Methods Determination of Low-Temperature Flexibility Edition P 1《航空航天系列密封剂 试验方法 低温挠性的确定》.pdf
  • AECMA PREN 3113-1999 Aerospace Series Screws Hexagonal Normal Head Fully Threaded in Titanium Alloy Anodized Classification 900 MPa 315 Degrees C Edition P 2 Withdrawn - Not Replac.pdf AECMA PREN 3113-1999 Aerospace Series Screws Hexagonal Normal Head Fully Threaded in Titanium Alloy Anodized Classification 900 MPa 315 Degrees C Edition P 2 Withdrawn - Not Replac.pdf
  • AECMA PREN 3114-1-1997 Aerospace Series Test Method Microstructure of (a + b) Titanium Alloy Wrought Products Part 1 General Requirements Edition P 1《航空航天系列.测试方法 微观结构(a + b)钛合金锻造产品.pdf AECMA PREN 3114-1-1997 Aerospace Series Test Method Microstructure of (a + b) Titanium Alloy Wrought Products Part 1 General Requirements Edition P 1《航空航天系列.测试方法 微观结构(a + b)钛合金锻造产品.pdf
  • AECMA PREN 3114-2-1997 Aerospace Series Test Method Microstructure (a + b) Titanium Alloy Wrought Products Part 2 Microstructure of Bars Sections Forging Stock and Forgings Edition.pdf AECMA PREN 3114-2-1997 Aerospace Series Test Method Microstructure (a + b) Titanium Alloy Wrought Products Part 2 Microstructure of Bars Sections Forging Stock and Forgings Edition.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ASTM

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1