ASTM D6378-2010(2016) 4057 Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products Hydrocarbons and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Me.pdf

上传人:appealoxygen216 文档编号:522339 上传时间:2018-12-03 格式:PDF 页数:14 大小:320.90KB
下载 相关 举报
ASTM D6378-2010(2016) 4057 Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products Hydrocarbons and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Me.pdf_第1页
第1页 / 共14页
ASTM D6378-2010(2016) 4057 Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products Hydrocarbons and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Me.pdf_第2页
第2页 / 共14页
ASTM D6378-2010(2016) 4057 Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products Hydrocarbons and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Me.pdf_第3页
第3页 / 共14页
ASTM D6378-2010(2016) 4057 Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products Hydrocarbons and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Me.pdf_第4页
第4页 / 共14页
ASTM D6378-2010(2016) 4057 Standard Test Method for Determination of Vapor Pressure (VPX) of Petroleum Products Hydrocarbons and Hydrocarbon-Oxygenate Mixtures (Triple Expansion Me.pdf_第5页
第5页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D6378 10 (Reapproved 2016)Standard Test Method forDetermination of Vapor Pressure (VPX) of PetroleumProducts, Hydrocarbons, and Hydrocarbon-OxygenateMixtures (Triple Expansion Method)1This standard is issued under the fixed designation D6378; the number immediately following the designa

2、tion indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the use o

3、f automated vaporpressure instruments to determine the vapor pressure exerted invacuum by volatile, liquid petroleum products, hydrocarbons,and hydrocarbon-oxygenate mixtures. This test method issuitable for testing samples with boiling points above 0 C(32 F) that exert a vapor pressure between 7 kP

4、a and 150 kPa(1.0 psi and 21 psi) at 37.8 C (100 F) at a vapor-to-liquidratio of 4:1. The liquid sample volume size required foranalysis is dependent upon the vapor-to-liquid ratio chosen(see Note 1) and the measuring chamber volume capacity ofthe instrument (see 6.1.1 and Note 3).NOTE 1The test met

5、hod is suitable for the determination of the vaporpressure of volatile, liquid petroleum products at temperatures from 0 Cto 100 C at vapor to liquid ratios of 4:1 to 1:1 (X=4to1)andpressuresup to 500 kPa (70 psi), but the precision statement (see Section 16) maynot be applicable.1.2 This test metho

6、d also covers the use of automated vaporpressure instruments to determine the vapor pressure exerted invacuum by aviation turbine fuels. This test method is suitablefor testing aviation turbine fuel samples with boiling pointsabove 0 C (32 F) that exert a vapor pressure between 0 kPaand 110 kPa (0 p

7、si and 15.5 psi) at a vapor-to-liquid ratio of4:1, in the temperature range from 25 C to 100 C (77 F to212 F).1.3 The vapor pressure (VPX) determined by this testmethod at a vapor-liquid ratio of 4:1 (X = 4) of gasoline andgasoline-oxygenate blends at 37.8 C can be correlated to thedry vapor pressur

8、e equivalent (DVPE) value determined byTest Method D5191 (see 16.3). This condition does not applywhen the sample is aviation turbine fuel.1.4 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.5 This standard does not purport t

9、o address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specificwarning statements, see 7.2 7.8.2. Ref

10、erenced Documents2.1 ASTM Standards:2D323 Test Method for Vapor Pressure of Petroleum Products(Reid Method)D2892 Test Method for Distillation of Crude Petroleum(15-Theoretical Plate Column)D4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4177 Practice for Automatic Sampling of P

11、etroleum andPetroleum ProductsD4953 Test Method for Vapor Pressure of Gasoline andGasoline-Oxygenate Blends (Dry Method)D5191 Test Method for Vapor Pressure of Petroleum Prod-ucts (Mini Method)D5842 Practice for Sampling and Handling of Fuels forVolatility MeasurementD5854 Practice for Mixing and Ha

12、ndling of Liquid Samplesof Petroleum and Petroleum ProductsD6299 Practice for Applying Statistical Quality Assuranceand Control Charting Techniques to Evaluate AnalyticalMeasurement System PerformanceD6300 Practice for Determination of Precision and BiasData for Use in Test Methods for Petroleum Pro

13、ducts andLubricantsD6708 Practice for Statistical Assessment and Improvementof Expected Agreement Between Two Test Methods thatPurport to Measure the Same Property of a Material3. Terminology3.1 Definitions of Terms Specific to This Standard:1This test method is under the jurisdiction of ASTM Commit

14、tee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility ofSubcommittee D02.08 on Volatility.Current edition approved Oct. 1, 2016. Published November 2016. Originallyapproved in 1999. Last previous edition approved in 2010 as D6378 10 DOI:10.1520/D6378-10R16.2For

15、referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700,

16、West Conshohocken, PA 19428-2959. United States13.1.1 dry vapor pressure equivalent (DVPE)a value cal-culated by a correlation equation from the total pressure (TestMethod D5191), which is equivalent to the value obtained onthe sample by Test Method D4953, Procedure A.3.1.2 partial pressure from dis

17、solved air (PPA), nthepressure exerted in vacuum from dissolved air that escapesfrom the liquid phase into the vapor phase.3.1.3 Reid vapor pressure equivalent (RVPE)a value cal-culated by a correlation equation from the TPX, which isequivalent to the value obtained on the sample by Test MethodD323.

18、3.1.4 total pressure (TPX), nthe pressure exerted invacuum by air- and gas-containing petroleum products, com-ponents and feedstocks, and other liquids, in the absence ofundissolved water at a vapor-liquid ratio of X:1.3.1.5 vapor pressure (VPX), nthe total pressure minus thePPA in the liquid at a v

19、apor-liquid ratio of X:1.VPX5 TPX2 PPA (1)4. Summary of Test Method4.1 Employing a measuring chamber with a built-in piston,a sample of known volume is drawn into the temperaturecontrolled chamber at 20 C or higher. After sealing thechamber, the temperature of the chamber is increased to aspecified

20、value simultaneously with the first expansion. Twofurther expansions are performed to a final volume of (X+1)times that of the test specimen. After each expansion, the TPXis determined.The PPAand the solubility of air in the specimenare calculated from the three resulting pressures. The (VPX)iscalcu

21、lated by subtracting the PPA in the liquid from TPX.NOTE 2For liquids containing very low levels of high vapor pressurecontaminants, which behave like a gas, this test method of determinationof the PPA and gases may lead to wrong results since the partial pressureof the contaminants will be included

22、 in the PPA.This effect is shown whenthe value of the PPA and gases exceeds the average maximum limit of7 kPa (1 psi).5. Significance and Use5.1 Vapor pressure is a very important physical property ofvolatile liquids for shipping and storage.5.2 The vapor pressure of gasoline and gasoline-oxygenateb

23、lends is regulated by various government agencies.5.3 Specifications for volatile petroleum products generallyinclude vapor pressure limits to ensure products of suitablevolatility performance.5.4 In this test method, an air saturation procedure prior tothe measurement is not required, thus eliminat

24、ing losses ofhigh volatile compounds during this step. This test method isfaster and minimizes potential errors from improper air satu-ration. This test method permits VPXdeterminations in thefield.5.5 This test method can be applied in online applications inwhich an air saturation procedure prior t

25、o the measurementcannot be performed.6. Apparatus6.1 The apparatus suitable for this test method employs asmall volume, cylindrically shaped measuring chamber withassociated equipment to control the chamber temperaturewithin the range from 0 C to 100 C. The measuring chambershall contain a movable p

26、iston with a maximum dead volumeof less than 1 % of the total volume at the lowest position toallow sample introduction into the measuring chamber andexpansion to the desired vapor-liquid ratio. A static pressuretransducer shall be incorporated in the piston. The measuringchamber shall contain an in

27、let/outlet valve combination forsample introduction and expulsion. The piston and the valvecombination shall be at the same temperature as the measuringchamber to avoid any condensation or excessive evaporation.6.1.1 The measuring chamber shall be designed to containbetween 5 mLand 15 mLof liquid an

28、d vapor and be capable ofmaintaining a vapor-liquid ratio of 4:1 to 1:1. The accuracy ofthe adjusted vapor-liquid ratio shall be within 0.05.NOTE 3The measuring chamber employed by the instruments used ingenerating the precision and bias statements were constructed of nickelplated aluminum and stain

29、less steel with a total volume of 5 mL.Measuring chambers exceeding a 5 mL capacity can be used, but theprecision and bias statements (see Section 16) are not known to apply.6.1.2 The pressure transducer shall have a minimum opera-tional range from 0 kPa to 200 kPa (0 psi to 29 psi) with aminimum re

30、solution of 0.1 kPa (0.01 psi) and a minimumaccuracy of 60.2 kPa (60.03 psi). The pressure measurementsystem shall include associated electronics and readout devicesto display the resulting pressure reading.6.1.3 Electronic temperature control shall be used to main-tain the measuring chamber at the

31、prescribed temperaturewithin 60.1 C for the duration of the vapor pressure measure-ment.6.1.4 A platinum resistance thermometer shall be used formeasuring the temperature of the measuring chamber. Theminimum temperature range of the measuring device shall befrom 0 C to 100 C with a resolution of 0.1

32、 C and anaccuracy of 60.1 C.6.1.5 The vapor pressure apparatus shall have provisions forrinsing the measuring chamber with a solvent of low vaporpressure or with the next sample to be tested.6.2 Vacuum Pump for Calibration, capable of reducing thepressure in the measuring chamber to less than 0.01 k

33、Pa(0.001 psi) absolute.6.3 McLeod Vacuum Gauge or Calibrated ElectronicVacuum Measuring Device for Calibration, to cover at least therange from 0.01 kPa to 0.67 kPa (0.1 mm to 5 mm Hg). Thecalibration of the electronic vacuum measuring device shall beregularly verified in accordance with Annex A6.3

34、on VacuumSensors in Test Method D2892.6.4 Pressure Measuring Device for Calibration, capable ofmeasuring local station pressure with an accuracy and aresolution of 0.1 kPa (1 mm Hg), or better, at the sameelevation relative to sea level as the apparatus in the laboratory.NOTE 4This test method does

35、not give full details of instrumentssuitable for carrying out this test. Details on the installation, operation, andmaintenance of each instrument may be found in the manufacturersmanual.D6378 10 (2016)27. Reagents and Materials7.1 Purity of ReagentsUse chemicals of at least 99 %purity for verificat

36、ion of instrument performance (see Section11). Unless otherwise indicated, it is intended that all reagentsconform to the specifications of the Committee of AnalyticalReagents of the American Chemical Society3where suchspecifications are available. Lower purities can be used,provided it is first asc

37、ertained that the reagent is of sufficientpurity to permit its use without lessening the accuracy of thedetermination.7.1.1 The chemicals in 7.3, 7.4, and 7.7 are suggested forverification of instrument performance (see Section 11), basedon the reference fuels analyzed in the 2003 interlaboratorystu

38、dy (ILS) (see 16.1, Table 1, and Note 16). Such referencefuels are not to be used for instrument calibration. Table 1identifies the accepted reference value (ARV) and uncertaintylimits, as well as the acceptable testing range for each of thereference fuels listed.NOTE 5Verification fluids reported b

39、y 12 of the D6378 data setparticipants in the 2003 ILS (see 16.1) included the following (withnumber of data sets identified in parentheses): 2,2-dimethylbutane (11),and 2,3-dimethylbutane (1).7.2 Cyclopentane, (WarningCyclopentane is flammableand a health hazard).7.3 2,2-Dimethylbutane, (Warning2,2

40、-dimethylbutane isflammable and a health hazard).7.4 2,3-Dimethylbutane, (Warning2,3-dimethylbutane isflammable and a health hazard).7.5 Methanol, (WarningMethanol is flammable and ahealth hazard).7.6 2-Methylpentane, (Warning2-methylpentane is flam-mable and a health hazard).7.7 Pentane, (WarningPe

41、ntane is flammable and a healthhazard).7.8 Toluene, (WarningToluene is flammable and a healthhazard).8. Sampling and Sample Introduction8.1 General Requirements:8.1.1 The extreme sensitivity of vapor pressure measure-ments to losses through evaporation and the resulting changesin composition is such

42、 as to require the utmost precaution andthe most meticulous care in the drawing and handling ofsamples.8.1.2 Obtain a sample and test specimen in accordance withPractice D4057, D4177, D5842,orD5854 when appropriate,except do not use the Sampling by Water Displacement sectionfor fuels containing oxyg

43、enates. Use either a 250 mL or 1 L(1 qt) sized container filled between 70 % and 80 % withsample. See Note 6 on effect of sample size on testingprecision.8.1.2.1 When the sample is aviation turbine fuel, use of100 mL size containers are suitable when they are filled to aminimum of 80 %.NOTE 6The cur

44、rent precision statements for gasoline and gasoline-oxygenate blends were derived from the 2003 ILS (see 16.1) usingsamples in 250 mL and 1 L (1 qt) clear glass containers. However,samples in containers of other sizes as prescribed in Practice D4057 maybe used, with the same filling requirement, but

45、 the precision can beaffected. The differences in precision results obtained from 250 mL and1 L containers were found to be statistically significant, in addition tohaving a statistically observable bias being detected between 250 mL and1 L containers. See Tables 2 and 3, as well as Figs. 1 and 2 fo

46、r morespecific details on precision differences as a function of VP4(37.8 C) andcontainer size, as well as 16.3.3 for specific details on the relative biasbetween 250 mL and 1 L containers. In general, numerically betterrepeatability values were determined at VP4(37.8 C) values 100 kPa, such as pent

47、ane, theprecision appears to worsen with diminishing liquid volume in the bottle.It is recommended that if pentane is used, that the % capacity in thecontainer be 50 %.NOTE 15In the 2007 ILS (see 16.1) using aviation turbine fuel, 2,2dimethylbutane was tested producing results comparable to the 2003

48、 ILS(see 16.1). A mean of 68.6 kPa with a standard deviation of 0.3 kPa wasdetermined. In the 2007 ILS (see 16.1) with aviation turbine fuels,D6378 10 (2016)699.95 % toluene was tested with a mean of 7.7 kPa and standard deviationof 0.2 kPa.11.2 Values obtained within the acceptable testing rangeint

49、ervals in Table 1 indicate that the instrument is performingat the level deemed acceptable by this standard. If valuesoutside the acceptable testing range intervals are obtained,verify the quality of the pure compound(s) and re-check thecalibration of the instrument (see Section 10).NOTE 16A reference fluid consisting of a 44.0/56.0 (m/m) blend ofpentane/toluene was included in the 2003 ILS (see 16.1), but resultsindicated that the data was not normally distributed.12. Quality Control Checks12.1 After having verified that the instrum

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1