ASTM D7468-2011 2916 Standard Test Method for Cummins ISM Test《康明斯ISM测试的标准试验方法》.pdf

上传人:刘芸 文档编号:525578 上传时间:2018-12-04 格式:PDF 页数:34 大小:2.31MB
下载 相关 举报
ASTM D7468-2011 2916 Standard Test Method for Cummins ISM Test《康明斯ISM测试的标准试验方法》.pdf_第1页
第1页 / 共34页
ASTM D7468-2011 2916 Standard Test Method for Cummins ISM Test《康明斯ISM测试的标准试验方法》.pdf_第2页
第2页 / 共34页
ASTM D7468-2011 2916 Standard Test Method for Cummins ISM Test《康明斯ISM测试的标准试验方法》.pdf_第3页
第3页 / 共34页
ASTM D7468-2011 2916 Standard Test Method for Cummins ISM Test《康明斯ISM测试的标准试验方法》.pdf_第4页
第4页 / 共34页
ASTM D7468-2011 2916 Standard Test Method for Cummins ISM Test《康明斯ISM测试的标准试验方法》.pdf_第5页
第5页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D7468 11Standard Test Method forCummins ISM Test1This standard is issued under the fixed designation D7468; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates t

2、he year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 The test method covers a heavy-duty diesel engine testprocedure conducted under high soot conditions to evaluate oilperformance with regard to valve train wear, top rin

3、g wear,sludge deposits, and oil filter plugging in an EGR environment.This test method is commonly referred to as the Cummins ISMTest.21.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.2.1 ExceptionThe only exception is wher

4、e there is nodirect SI equivalent such as screw threads, national pipethreads/diameters, tubing sizes, or where there is a sole sourceof supply equipment specification.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of

5、 the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. See Annex A1 forgeneral safety precautions.1.4 Table of Contents:SectionScope 1Referenced Documents 2Terminology 3Summary of Test Method 4Signific

6、ance and Use 5Apparatus 6Test Engine Configuration 6.1Test Engine 6.1.1Oil Heat Exchanger, Adapter Blocks, Block Off Plate 6.1.2Oil Filter Head Modification 6.1.3Oil Pan Modification 6.1.4Engine Control Module (ECM) 6.1.5Engine Position Sensor 6.1.6Intake Manifold Temperature Sensor 6.1.7Barometric

7、Pressure Sensor 6.1.8SectionTurbocharger Controller 6.1.9Power Supply Voltage 6.1.10Air Compressor and Fuel Pump 6.1.11Engine Block Preparation 6.1.12Test Stand Configuration 6.2Engine Mounting 6.2.1Intake Air System 6.2.2Aftercooler 6.2.3Exhaust System 6.2.4Exhaust Gas Recirculation System 6.2.5Fue

8、l System 6.2.6Coolant System 6.2.7Pressurized Oil Fill System 6.2.8External Oil System 6.2.9Crankcase Aspiration 6.2.10Blowby Rate 6.2.11System Time Responses 6.3Oil Sample Containers 6.4Mass Balance 6.5Engine and Cleaning Fluids 7Test Oil 7.1Test Fuel 7.2Engine Coolant 7.3Pentane 7.4Solvent 7.5Prep

9、aration of Apparatus 8Cleaning of Parts 8.1General 8.1.1Engine Block 8.1.2Cylinder Head 8.1.3Rocker Cover and Oil Pan 8.1.4External Oil System 8.1.5Crosshead Cleaning and Measurement 8.1.6Rod Bearing Cleaning and Measurement 8.1.7Ring Cleaning and Measurement 8.1.8Injector Adjusting Screw Cleaning a

10、nd Measurement 8.1.9Engine Assembly 8.2General 8.2.1Parts Reuse and Replacement 8.2.2Build-Up Oil 8.2.3Coolant Thermostat 8.2.4Oil Thermostat 8.2.5Fuel Injectors 8.2.6New Parts 8.2.7Operational Measurements 8.3Units and Formats 8.3.1Instrumentation Calibration 8.3.2Temperatures 8.3.3Pressures 8.3.4F

11、low Rates 8.3.5Intake and Exhaust CO2Measurement 8.3.6Engine/Stand Calibration and Non-Reference Oil Tests 9General 9.1New Test Stand 9.2New Test Stand Calibration 9.2.1Stand Calibration Period 9.3Stand Modification and Calibration Status 9.4Test Numbering System 9.51This test method is under the ju

12、risdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.B0 on Automotive Lubricants.Current edition approved Oct. 1, 2011. Published November 2011. Originallyapproved in 2008. Last previous edition approved in 2010 as D746810b. DOI:10.

13、1520/D7468-11.2Until the next revision of this test method, the ASTM Test Monitoring Centerwill update changes in this test method by means of Information Letters. Informa-tion letters may be obtained from the ASTM Test Monitoring Center, 6555 PennAvenue, Pittsburgh, PA 15206-4489, Attention: Admini

14、strator. This edition incor-porates revisions in all information letters through No. 111.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.SectionGeneral 9.5.1Reference Oil Tests 9.5.2Non-Reference Oil Tests 9.5.3Reference Oil Test Acc

15、eptance 9.6Reference Oil Accountability 9.7Last Start Date 9.8Donated Reference Oil Test Programs 9.9Adjustments to Reference Oil Calibration Periods 9.10Procedural Deviations 9.10.1Parts and Fuel Shortages 9.10.2Reference Oil Test Data Flow 9.10.3Special Use of the Reference Oil Calibration System

16、9.10.4Test Procedure 10Engine Installation and Stand Connections 10.1Coolant System Fill 10.2Oil Fill for Break-in 10.3Engine Build Committed 10.3.3Fuel Samples 10.4Engine Warm-up 10.5Shutdown During Warm-up 10.5.1Engine Break-in 10.6Shutdown and Maintenance 10.7Normal Shutdown 10.7.1Emergency Shutd

17、own 10.7.2Maintenance 10.7.3Downtime 10.7.4200-h Test Procedure 10.8Oil Fill for Test 10.8.2Operating Conditions 10.8.4Injection Timing Change 10.8.5Mass % Soot Validity 10.8.6Test Timer 10.8.7Operational Data Acquisition 10.8.8Oil Sampling 10.8.9Oil Addition 10.8.10End of Test (EOT) 10.9Engine Disa

18、ssembly 10.9.3Calculations, Ratings and Test Validity 11Crosshead Mass Loss 11.1Crosshead Mass Loss Correction Factor 11.1.8Injector Adjusting Screw Mass Loss 11.2Injector Adjusting Screw Correction Factor 11.2.5Ring Mass Loss 11.3Sludge Ratings 11.4Oil Filter Plugging 11.5Oil Analyses 11.6Oil Consu

19、mption 11.7Fuel Analyses 11.8Additional Analysis 11.8.1Assessment of Operational Validity 11.9Assessment of Test Interpretability 11.10Test Report 12Report Forms 12.1Reference Oil Test 12.2Electronic transmission of Test Results 12.2.1Precision and Bias 13Precision 13.1Intermediate Precision Conditi

20、ons 13.1.1Reproducibility Conditions 13.1.2Bias 13.2Keywords 14AnnexesSafety Precautions Annex A1Intake Air Aftercooler Annex A2Engine Build Parts Kit Annex A3Sensor Locations, Special Hardware, and Engine BlockModificationsAnnex A4External Oil System Annex A5Fuel Specification Annex A6Cummins Servi

21、ce Publications Annex A7Specified Units and Formats Annex A8Report Forms and Data Dictionary Annex A9Sludge Rating Worksheets Annex A10Oil Analyses Annex A11Determination of Operational Validity Annex A12Exhaust CO2Sampling Probe Annex A13SectionISM Merit Rating Calculation Annex A14AppendixTypical

22、System Configurations Appendix X12. Referenced Documents2.1 ASTM Standards:3D86 Test Method for Distillation of Petroleum Products atAtmospheric PressureD93 Test Methods for Flash Point by Pensky-MartensClosed Cup TesterD97 Test Method for Pour Point of Petroleum ProductsD130 Test Method for Corrosi

23、veness to Copper from Pe-troleum Products by Copper Strip TestD235 Specification for Mineral Spirits (Petroleum Spirits)(Hydrocarbon Dry Cleaning Solvent)D287 Test Method for API Gravity of Crude Petroleum andPetroleum Products (Hydrometer Method)D445 Test Method for Kinematic Viscosity of Transpare

24、ntand Opaque Liquids (and Calculation of Dynamic Viscos-ity)D482 Test Method for Ash from Petroleum ProductsD524 Test Method for Ramsbottom Carbon Residue ofPetroleum ProductsD613 Test Method for Cetane Number of Diesel Fuel OilD664 Test Method for Acid Number of Petroleum Productsby Potentiometric

25、TitrationD976 Test Method for Calculated Cetane Index of DistillateFuelsD1319 Test Method for Hydrocarbon Types in LiquidPetroleum Products by Fluorescent Indicator AdsorptionD2274 Test Method for Oxidation Stability of DistillateFuel Oil (Accelerated Method)D2500 Test Method for Cloud Point of Petr

26、oleum ProductsD2622 Test Method for Sulfur in Petroleum Products byWavelength Dispersive X-ray Fluorescence SpectrometryD2709 Test Method for Water and Sediment in MiddleDistillate Fuels by CentrifugeD4052 Test Method for Density, Relative Density, and APIGravity of Liquids by Digital Density MeterD

27、4175 Terminology Relating to Petroleum, PetroleumProducts, and LubricantsD4294 Test Method for Sulfur in Petroleum and PetroleumProducts by Energy Dispersive X-ray Fluorescence Spec-trometryD4485 Specification for Performance of Active API ServiceCategory Engine OilsD4737 Test Method for Calculated

28、Cetane Index by FourVariable EquationD4739 Test Method for Base Number Determination byPotentiometric Hydrochloric Acid TitrationD5185 Test Method for Determination of Additive Ele-ments, Wear Metals, and Contaminants in Used Lubricat-ing Oils and Determination of Selected Elements in Base3For refer

29、enced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.D7468 112Oils by Inductively Coupled Plasma Atomic EmissionSpectrometry

30、 (ICP-AES)D5453 Test Method for Determination of Total Sulfur inLight Hydrocarbons, Spark Ignition Engine Fuel, DieselEngine Fuel, and Engine Oil by Ultraviolet FluorescenceD5967 Test Method for Evaluation of Diesel Engine Oils inT-8 Diesel EngineE29 Practice for Using Significant Digits in Test Dat

31、a toDetermine Conformance with SpecificationsE178 Practice for Dealing With Outlying Observations2.2 Coordinating Research Council:4CRC Manual No. 202.3 National Archives and Records Administration:Code of Federal Regulations Title 40 Part 86.310-7953. Terminology3.1 Definitions:3.1.1 blind referenc

32、e oil, na reference oil, the identity ofwhich is unknown by the test facility. D41753.1.2 blowby, nin internal combustion engines, that por-tion of the combustion products and unburned air/fuel mixturethat leaks past piston rings into the engine crankcase duringoperation.3.1.3 calibrate, vto determi

33、ne the indication or output ofa device (e.g., thermometer, manometer, engine) with respectto that of a standard.3.1.4 exhaust gas recirculation (EGR), na method bywhich a portion of the engine exhaust is returned to thecombustion chambers through the intake system.3.1.5 heavy-duty, adjin internal co

34、mbustion engine op-eration, characterized by average speeds, power output, andinternal temperatures that are close to the potential maximum.D44853.1.6 heavy-duty engine, nin internal combustion enginetypes, one that is designed to allow operation continuously at orclose to its peak output.3.1.7 non-

35、reference oil, nany oil other than a referenceoil, such as a research formulation, commercial oil or candidateoil. D41753.1.8 non-standard test, na test that is not conducted inconformance with the requirements in the standard testmethod; such as running in an non-calibrated test stand orusing diffe

36、rent test equipment, applying different equipmentassembly procedures, or using modified operating conditions.D41753.1.9 reference oil, nan oil of known performance char-acteristics, used as a basis for comparison. D44853.1.10 sludge, nin internal combustion engines, a deposit,principally composed of

37、 insoluble resins and oxidation prod-ucts from fuel combustion and the lubricant, that does not drainfrom engine parts but can be removed by wiping with a cloth.D41753.1.11 test oil, nany oil subjected to evaluation in anestablished procedure. D59673.1.12 valve train, nin internal combustion engines

38、, theseries of components, such as valves, crossheads, rocker arms,push rods, and camshaft, that open and close the intake andexhaust valves.3.1.13 wear, nthe loss of material from a surface, gener-ally occurring between two surfaces in relative motion, andresulting from mechanical or chemical actio

39、n or a combinationof both. D41753.2 Definitions of Terms Specific to This Standard:3.2.1 crosshead, nan overhead component, located be-tween the rocker arm and each intake valve and exhaust valvepair, that transfers rocker arm travel to the opening and closingof each valve pair.3.2.1.1 DiscussionEac

40、h cylinder has two crossheads, onefor each pair of intake valves and exhaust valves.3.2.2 de-rate protocols, nprotocols in the engine controlmodule that cause the engine to reduce power output whencertain operating parameters are exceeded.3.2.3 overhead, nin internal combustion engines, thecomponent

41、s of the valve train located in or above the cylinderhead.3.2.4 overfuel, vto cause the fuel flow to exceed thestandard production setting.4. Summary of Test Method4.1 This test method uses a Cummins ISM 500 diesel enginewith a specially modified engine block. Test operation includesa 25 min warm-up

42、,a2hbreak-in, and 200 h in four 50 hstages. During stages A and C the engine is operated withretarded fuel injection timing and is overfueled to generateexcess soot. During stages B and D the engine is operated atconditions to increase valve train wear.4.2 Prior to each test, the engine is cleaned a

43、nd assembledwith new cylinder liners, pistons, piston rings and overheadvalve train components. All aspects of the assembly arespecified.4.3 A forced oil drain, an oil sample and an oil addition,equivalent to an oil consumption of 0.064 g/MJ, is performedat the end of each 25 h period.4.4 The test s

44、tand is equipped with the appropriate instru-mentation to control engine speed, fuel flow, and other oper-ating parameters.4.5 Oil performance is determined by assessing crossheadwear, top ring mass loss, injector adjusting screw mass loss,sludge deposits, and oil filter plugging.5. Significance and

45、 Use5.1 This test method was developed to assess the perfor-mance of an engine oil to control engine wear and depositsunder heavy-duty operating conditions selected to acceleratesoot generation, valve train wear, and deposit formation in aturbocharged, aftercooled four-stroke-cycle diesel engineequi

46、pped with exhaust gas recirculation hardware.5.2 This test method may be used for engine oil specifica-tion acceptance when all details of this test method are incompliance. Applicable engine oil service categories are in-cluded in Specification D4485.4Available from the Coordinating Research Counci

47、l, Inc., 219 PerimeterParkway, Atlanta, GA 30346.5Available from Superintendent of Documents, Attn: New Orders, P.O. Box371954, Pittsburgh, PA 15250-7954. Charge orders may be telephoned to theGovernment Printing Office order desk.D7468 1135.3 The design of the engine used in this test method isrepr

48、esentative of many, but not all, modern diesel engines. Thisfactor, along with the accelerated operating conditions needs tobe considered when extrapolating test results.6. Apparatus6.1 Test Engine Configuration:6.1.1 Test EngineThe Cummins ISM 500 is an in-linesix-cylinder heavy-duty diesel engine

49、with 11 L of displace-ment and is turbocharged and aftercooled. The engine has anoverhead valve configuration and EGR hardware. It features a2002 emissions configuration with electronic control of fuelmetering and fuel injection timing. Obtain the test engine andthe engine build parts kit from the central parts distributor(CPD).6The components of the engine build parts kit areshown in Table A3.1. Non-kit parts are shown in Table A3.2.6.1.2 Oil Heat Exchanger, Adapter Blocks, and Block-offPlateThe oil heat exchanger is relocated from the stockposition with the

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1