1、Designation: E1214 11 (Reapproved 2018)Standard Guide forUse of Melt Wire Temperature Monitors for Reactor VesselSurveillance1This standard is issued under the fixed designation E1214; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision
2、, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide describes the application of melt wire tem-perature monitors and their use for reactor vessel
3、 surveillanceof light-water power reactors as called for in Practices E185and E2215.1.2 The purpose of this guide is to recommend the selectionand use of the common melt wire technique where thecorrespondence between melting temperature and compositionof different alloys is used as a passive tempera
4、ture monitor.Guidelines are provided for the selection and calibration ofmonitor materials; design, fabrication, and assembly of moni-tor and container; post-irradiation examinations; interpretationof the results; and estimation of uncertainties.1.3 The values stated in SI units are to be regarded a
5、sstandard. The values given in parentheses are mathematicalconversions to inch-pound units that are provided for informa-tion only and are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the
6、user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulatory limitations prior to use.(See Note 1.)1.5 This international standard was developed in accor-dance with internationally recognized principles on standard-ization
7、 established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2E185 Practice for Design of Surveillance Programs forLigh
8、t-Water Moderated Nuclear Power Reactor VesselsE706 Master Matrix for Light-Water Reactor PressureVesselSurveillance StandardsE794 Test Method for MeltingAnd Crystallization Tempera-tures By Thermal AnalysisE900 Guide for Predicting Radiation-Induced TransitionTemperature Shift in Reactor Vessel Mat
9、erialsE2215 Practice for Evaluation of Surveillance Capsulesfrom Light-Water Moderated Nuclear Power Reactor Ves-sels3. Significance and Use3.1 Temperature monitors are used in surveillance capsulesin accordance with Practice E2215 to estimate the maximumvalue of the surveillance specimen irradiatio
10、n temperature.Temperature monitors are needed to give evidence of overheat-ing of surveillance specimens beyond the expected tempera-ture. Because overheating causes a reduction in the amount ofneutron radiation damage to the surveillance specimens, thisoverheating could result in a change in the me
11、asured propertiesof the surveillance specimens that would lead to an unconser-vative prediction of damage to the reactor vessel material.3.2 The magnitude of the reduction of radiation damagewith overheating depends on the composition of the materialand time at temperature. Guide E900 provides an ac
12、ceptedmethod for quantifying the temperature effect. Because theevidence from melt wire monitors gives no indication of theduration of overheating above the expected temperature asindicated by melting of the monitor, the significance ofoverheating events cannot be quantified on the basis oftemperatu
13、re monitors alone. Indication of overheating doesserve to alert the user of the data to further evaluate theirradiation temperature exposure history of the surveillancecapsule.3.3 This guide is included in Master Matrix E706 thatrelates several standards used for irradiation surveillance oflight wat
14、er reactor vessel materials. It is intended primarily toamplify the requirements of Practice E185 in the design oftemperature monitors for the surveillance program. It may alsobe used in conjunction with Practice E2215 to evaluate thepost-irradiation test measurements1This guide is under the jurisdi
15、ction of ASTM Committee E10 on NuclearTechnology and Applicationsand is the direct responsibility of SubcommitteeE10.02 on Behavior and Use of Nuclear Structural Materials.Current edition approved Jan. 1, 2018. Published January 2018. Originallyapproved in 1987. Last previous edition approved in 201
16、1 as E121411E01. DOI:10.1520/E1214-11R18.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM Inter
17、national, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards,
18、Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.14. Selection and Calibration of Monitor Materials4.1 Selection of Monitor Materials:4.1.1 Materials selected for temperature monitors shall pos-sess unique melting temperatures. Since compo
19、sition, andparticularly the presence of impurities, strongly influencemelting temperature, the fabricated monitor materials shallconsist of either metals of purity 99.9 % or greater or eutecticalloys such that the measured melting temperature is within63C (65F) of the recognized melting temperature.
20、Transmutation-induced changes of the monitor materials sug-gested in 4.1.2 are not considered significant for fluenceexposures up to 1 1020n/cm2(E 1 MeV) relative to thegoal of these temperature monitors in flagging deviations fromexpected temperatures.4.1.2 The monitor materials in Table 1 provide
21、temperatureindications in the range of 266 to 327C (511 to 621F). Othermetals or alloys may be selected for the temperatures ofinterest provided the monitor materials meet the technicalrequirements of this guide.4.1.3 The chosen monitor materials shall be carefully evalu-ated for radiological health
22、 hazards.NOTE 1It is beyond the scope of this guide to provide safety andhealth criteria, and the user is cautioned to seek further guidance.4.2 Calibration of Monitor Materials Each lot of monitormaterials shall be calibrated by melting tests to establish theactual melting temperatures. The melting
23、 temperature testsshall be conducted in accordance with Test Method E794.Ifanalternate method of calibration is used, the procedure andequipment must be described, the resultant mean values anduncertainties must be reported, and traceability to standardsmust be declared.5. Design, Fabrication, and A
24、ssembly of Monitor andContainer5.1 The design of the monitor and its container shall ensurethat the maximum temperature of the surveillance specimens isdetermined within 610C (618F).5.2 The design shall provide for a minimum of one set ofmonitors for each surveillance capsule. Additional sets ofmoni
25、tors are recommended to characterize the in-service axialtemperature profiles necessary to determine the maximumtemperature of each surveillance specimen.5.3 The design of the monitor and its container shall ensurethat the monitor will readily sense the environmental tempera-ture of the surveillance
26、 specimens and yet not be subject to anyinfluences from fabrication or assembly or even post-serviceexamination. The monitors typically consist of melt wirespositioned adjacent to or among the surveillance specimens.5.4 The quantity of monitors within each set shall beadequate to identify any temper
27、ature excursion of 10C (18F)up to the highest potential temperature, such as 330C (626F).It is recommended that monitors be selected to measuretemperature at intervals of 5 to 12C (9 to 22F). At least onemonitor shall remain intact throughout the service life; there-fore the highest temperature moni
28、tor shall possess a meltingtemperature greater than the highest anticipated temperature.5.5 Fabrication and assembly of the monitors and containersshall protect and maintain the integrity of each temperaturemonitor and its ability to respond by melting at the environ-mental temperature of the survei
29、llance specimens correspond-ing to the monitors melting temperature. The monitors andcontainers shall be designed, fabricated and assembled toensure that the monitors melt at a temperature within 63C(5F) of the environmental temperature of the specimens.5.6 Identification of each monitor, its materi
30、al and meltingtemperature, and its orientation and location in the surveillancecapsule shall be maintained. Provision for means of verifica-tion shall be done by design.6. Post-Irradiation Examination6.1 Following irradiation, the temperature monitors shall beexamined for evidence of melting to esta
31、blish the maximumexposure temperature of the encapsulated surveillance speci-mens. Precautions should be taken while recovering the moni-tors from the surveillance capsule and during subsequentexamination.6.1.1 The monitor design and method of encapsulation shallbe considered in the recovery procedu
32、re to ensure that themonitors are not damaged and that the original identity ofindividual monitors and their location is maintained.6.1.2 Recovery and examination of the monitors should beperformed remotely or with sufficient shielding to protect theoperator from unnecessary radiation exposure.6.2 E
33、valuation of the temperature monitors after service forevidence of melting should be performed using suitable equip-ment that is dependent on the design of the monitor containerand the examination facility. When visual inspection of themonitors is possible, such as with periscopes, each monitorshall
34、 be examined and the results recorded. When possible,photographic records should be made of each monitor or set ofmonitors.When visual inspection is not practical or conclusive,radiography or metallographic examination may be necessary.Destructive examination should be performed only if furtherconfi
35、rmation of the melting temperature is necessary.6.3 The monitors shall be evaluated on the following basis:6.3.1 UnmeltedNo evidence of melting of any portion ofthe monitor.6.3.2 Partially MeltedAny evidence of any melting of anyportion of the monitor.6.3.3 Fully MeltedEvidence that the entire monit
36、or wassubject to melting.TABLE 1 Monitor Material Melting TemperaturesMonitor Material,Weight %Melting Temperature,CMelting Temperature,FCd17.4 Zn 266 511Au20.0 Sn 280 536Pb5.0 Ag5.0 Sn 292 558Pb2.5 Ag 304 579Pb1.5 Ag1.0 Sn 309 588Pb1.75 Ag0.75 Sn 310 590Cd1.2 Cu 314 597Cd 321 610Pb 327 621E1214 11
37、(2018)26.4 If there is reason to question the results, monitors shouldbe reevaluated after completion of the post-irradiation exami-nation to ensure that there was no change in the meltingtemperature. This verification of melting temperature may beperformed as described in 4.2.7. Interpretation7.1 T
38、he design of the melt wire configuration should pre-vent ambiguities as to incipient melting. However, there maybe circumstances where melting is questionable. Change inshape, slumping, and segmenting are indications of melting.When initial examination results are uncertain, this shall bedocumented.
39、 Further nondestructive and destructive examina-tions may be performed if warranted to verify the condition ofthe monitor.7.2 The condition of the monitors should be consistentaccording to axial position and expected relative temperatures.7.3 The range of possible maximum service temperatures ofthe
40、surveillance specimen shall be estimated and documented,based upon the indications provided by the temperature moni-tors. The temperature estimate should consider the design ofthe monitor and container, the location of specimens relative tothe monitors, and potential temperature gradients.7.4 Discre
41、pancies between the temperature monitor resultsand historical service conditions shall be assessed and de-scribed.8. Estimation of Uncertainties8.1 Uncertainties arise from limitations in precision and biasin determining the initial melting temperatures of each monitor,the ability of the monitor to
42、accurately indicate the environ-mental temperature, the relationship in temperature betweenthe monitors and the specimens, and the bias in discriminatingmelting.8.2 All known and estimated uncertainties, including adescription of their determination, shall be reported with theestimated maximum expos
43、ure temperatures.8.3 Uncertainties resulting from unresolved ambiguitiesshall be described. Probable causes and subsequent implica-tions should be stated.9. Report9.1 In addition to the reporting requirements of PracticesE185 and E2215, the following information shall be reported:9.1.1 Description o
44、f the temperature monitors includingchemical composition of the monitor melt wires and theirrespective melting temperatures with uncertainties, containerdesign, identification, and location in the irradiation capsule.9.1.2 Results of the post-service evaluation in which eachmonitor condition is char
45、acterized as unmelted, partiallymelted, or fully melted.9.1.3 The estimated maximum exposure temperature rangeof the surveillance specimens and the associated uncertainties.9.1.4 The agreement between the temperature monitor re-sults and the historical service conditions and description ofany anomal
46、ies found while recovering, examining, or evaluat-ing the monitors.9.1.5 Results of any additional examinations, if performed,to resolve inconsistent monitor results.9.2 The following additional documentation should be re-ported if available:9.2.1 Photographs of each irradiated temperature monitorth
47、at document the visual observations.9.2.2 Preirradiation test results used to certify the meltingtemperatures of each monitor type.9.2.3 Test results, if performed, verifying post-irradiationmelting temperature for each monitor.10. Keywords10.1 nuclear reactor vessels; neutron irradiation; surveil-l
48、ance (of nuclear reactor vessels)ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof
49、 infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have no