ASTM E1877-2013 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实施规程》.pdf

上传人:赵齐羽 文档编号:529703 上传时间:2018-12-05 格式:PDF 页数:6 大小:102.66KB
下载 相关 举报
ASTM E1877-2013 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实施规程》.pdf_第1页
第1页 / 共6页
ASTM E1877-2013 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实施规程》.pdf_第2页
第2页 / 共6页
ASTM E1877-2013 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实施规程》.pdf_第3页
第3页 / 共6页
ASTM E1877-2013 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实施规程》.pdf_第4页
第4页 / 共6页
ASTM E1877-2013 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实施规程》.pdf_第5页
第5页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: E1877 13Standard Practice forCalculating Thermal Endurance of Materials fromThermogravimetric Decomposition Data1This standard is issued under the fixed designation E1877; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision

2、, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice describes the determination of thermalendurance, thermal index, and relative thermal index

3、 fororganic materials using the Arrhenius activation energy gener-ated by thermogravimetry.1.2 This practice is generally applicable to materials with awell-defined thermal decomposition profile, namely a smooth,continuous mass change.1.3 The values stated in SI units are to be regarded asstandard.

4、No other units of measurement are included in thisstandard.1.4 There is no ISO standard equivalent to this practice.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate

5、 safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E1641 Test Method for Decomposition Kinetics by Thermo-gravimetry Using the Ozawa/Flynn/Wall MethodE2550 Test Method for Thermal Stability by Thermogravi-me

6、try3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 failure, nchange in some chemical, physical,mechanical, electrical or other property of sufficient magnitudeto make it unsuitable for a particular use.3.1.2 failure temperature (Tf), nthe temperature at which amaterial fails a

7、fter a selected time.3.1.3 thermal index (TI), nthe temperature correspondingto a selected time-to-failure.3.1.4 relative thermal index (RTI), nthe temperature cor-responding to a selected time-to-failure when compared withthat of a control with proven thermal endurance characteristics.3.1.4.1 Discu

8、ssionThe TI and RTI are considered to be themaximum temperature below which the material resistschanges in its properties over a selected period of time. In theabsence of comparison data for a control material, a thermalendurance (time-to-failure) of 60 000 h has been arbitrarilyselected for measuri

9、ng TI and RTI.3.1.5 thermal endurance, nthe time-to-failure correspond-ing to a selected temperature. Also known as thermal lifetime.4. Summary of Practice4.1 The Arrhenius activation energy obtained from otherTest Methods (such as Test Method E1641, Refs (1, 2),3etc.)is used to construct the therma

10、l endurance curve of an organicmaterial from which an estimate of lifetime at selected tem-peratures may be obtained.5. Significance and Use5.1 Thermogravimetry provides a rapid method for thedetermination of the temperature-decomposition profile of amaterial.5.2 This practice is useful for quality

11、control, specificationacceptance, and research.5.3 This test method is intended to provide an acceleratedthermal endurance estimation in a fraction of the time requirefor oven-aging tests. The primary product of this test method isthe thermal index (temperature) for a selected estimatedthermal endur

12、ance (time) as derived from material decompo-sition.5.4 Alternatively, the estimated thermal endurance (time) ofa material may be estimated from a selected thermal index(temperature).5.5 Additionally, the estimated thermal endurance of amaterial at selected failure time and temperature may be1This p

13、ractice is under the jurisdiction of Committee E37 on Thermal Measure-ments and is the direct responsibility of Subcommittee E37.10 on Fundamental,Statistical and Mechanical Properties.Current edition approved Oct. 15, 2013. Published December 2013. Originallyapproved in 1997. Last previous edition

14、approved in 2011 as E1877 11. DOI:10.1520/E1877-13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The boldf

15、ace numbers in parentheses refer to a list of references at the end ofthis standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1estimated when compared to a reference value for thermalendurance and thermal index obtained from elec

16、trical ormechanical oven aging tests.5.6 This practice shall not be used for product lifetimepredications unless a correlation between test results and actuallifetime has been demonstrated. In many cases, multiplemechanisms occur during the decomposition of a material,with one mechanism dominating o

17、ver one temperature range,and a different mechanism dominating in a different tempera-ture range. Users of this practice are cautioned to demonstratefor their system that any temperature extrapolations are tech-nically sound.6. Calculation6.1 The following values are used to calculate thermalenduran

18、ce, estimated thermal life and failure temperature.6.1.1 The following definitions apply to 6.1 6.4:6.1.1.1 E = Arrhenius activation energy (J/mol),NOTE 1E may be obtained from another methods (such as TestMethod E1641, Ref (1, 2), etc.)6.1.1.2 R = Universal gas constant (= 8.31451 J/(mol K),6.1.1.3

19、 = Heating rate (K/min),NOTE 2 may obtained from Test Method E2550 and is typically 5K/min.6.1.1.4 TI = thermal index (K),6.1.1.5 a = Doyle approximation integral (taken from Table1),6.1.1.6 = Constant conversion failure criterion,6.1.1.7 tf= Estimated thermal endurance (thermal life) for aconstant

20、conversion () taken as the failure criterion (min),6.1.1.8 Tc= Temperature for the point of constant conver-sion for (K) obtained from Test Method E2550, and6.1.1.9 RTI = Relative Thermal Index (K).6.1.1.10 Estandard deviation in activation energy (J/mol)obtained from Test Method E1641, Ref (1, 2),

21、etc.NOTE 3The precision of the calculation in this practice are exponen-tially dependent on the uncertainty of activation energy value used. Careshould be taken to use only the most precise values of E.6.1.1.11 TI = Thermal index (K),6.1.1.12 TI = Standard deviation of the thermal index (K),6.1.1.13

22、 RTI = Standard deviation of the relative thermalindex (K),6.1.1.14 tf= Standard deviation of the thermal endurance(min),6.1.1.15 tr= Reference value for thermal endurance (min),and6.1.1.16 Tr= Reference value for thermal index (K).6.2 Method 1 Thermal Index:6.2.1 Using the activation energy (E) and

23、 failure tempera-ture (Tc), determine the value for E/RTc.6.2.2 Using the value of E/RTc, determine the value for theDoyle approximation intergral (a) by interpolation in Table 1.6.2.3 Select the thermal endurance (tf) and calculate itslogarithm.6.2.4 Substitute the values for E, R, log(tf), log(E/R

24、Tc) anda into Eq 1 to obtain the thermal index (TI) (5).TI 5 E2.303 R log tf! 2 log$E R % 1a#! (1)6.2.5 Determine the relative standard deviation (TI/TI)using Eq 2.TITI1.2EE (2)6.2.6 Report the thermal index (TI) and its relative standarddeviation (TI/TI) along with the thermal endurance (tf).6.3 Me

25、thod B Thermal Endurance Curve:6.3.1 Arbitrarily select two or three temperatures in theregion of interest and calculate the corresponding logarithm ofthe thermal endurance (logtf) values at each temperatureusing Eq 3.logtf# 5 E2.303 RT! 5 logE R !# 2 a# (3)TABLE 1 Numerical Integration Constants (3

26、, 4)E/RT a8 5.36999 5.898010 6.415711 6.927612 7.432713 7.932314 8.427315 8.918216 9.405617 9.890018 10.371619 10.850720 11.327721 11.802622 12.275723 12.747124 13.217025 13.685526 14.152727 14.618728 15.083629 15.547430 16.010331 16.472232 16.933333 17.393634 17.853235 18.312036 18.770137 19.227638

27、 19.684539 20.140840 20.596641 21.051942 21.506643 21.960944 22.414845 22.868246 23.321247 23.773848 24.226049 24.677950 25.129451 25.580652 26.031453 26.482054 26.932355 27.382356 27.831957 28.281458 28.730559 29.179460 29.6281E1877 1326.3.2 Prepare a display of logarithm of thermal enduranceon the

28、 ordinate versus the reciprocal of absolute temperature onthe abscissa (see Fig. 1).6.3.3 Alternative thermal indexes (TI) and associated loga-rithm of thermal endurance (logtf may be estimated from thisdisplay.6.3.4 The standard deviation in the time-to-failure (tf) maybe estimated using Eq 4.tftf5

29、 1 2 0.052 E RT! 3 E E! (4)6.4 Method C Relative Thermal Index:6.4.1 Relative Thermal Index may be determined from theactivation energy determined by thermogravimetry and thethermal index obtained by some other method (such aselectrical or mechanical tests) using Eq 5.RTI 5 ERln tf# 2 lntr#1ERTr!# (

30、5)6.4.2 The relative standard deviation of the relative thermalindex (RTI/RTI) is estimate from Eq 6 where the referencevalues of thermal endurance (tr) and corresponding referencetemperature (T) are considered to be exact.RTIRTI 5 1.4EE (6)7. Report7.1 Report the following information:7.1.1 The val

31、ue, standard deviation (or relative standarddeviation), and source for each value used in the determination;7.1.2 Designation of the material under test, including thename of the manufacturer, the lot number, and supposedchemical composition when known; and7.1.3 The calculated thermal index (TI) and

32、 its relativestandard deviation (TI/TI) or relative thermal index (RTI) andits relative standard deviation (RTI/RTI) along with theidentified thermal endurance.7.1.3.1 ExampleTI (60 000 hr) = 453 6 6 K (180 6 6C)7.1.4 The specific dated version of this practice that is used.8. Precision and Bias48.1

33、 The precision and bias of these calculations depend onthe precision and bias of the kinetic data used in them. Toprovide an example of the precision expected, thermal indexwas calculated by the procedure in this practice using data forpoly(tetrafluoroethylene) from the interlaboratory study con-duc

34、ted to develop the precision and bias statement for TestMethod E1641. Extreme values of thermal life were calculatedusing an arbitrarily chosen value for temperature of 600 K andthe extreme values of E corresponding to the 95 % confidencelevel from that interlaboratory study. The resulting calculate

35、dextreme values were 9 years and 3700 years for this material.9. Keywords9.1 Arrhenius activation energy; Arrhenius pre-exponentialfactor; kinetic parameters; relative thermal index; thermaldecomposition; thermal endurance; thermal life; thermogravi-metric analysis4Supporting data have been filed at

36、 ASTM International Headquarters and maybe obtained by requesting Research Report RR:E37-1024. ContactASTM CustomerService at serviceastm.org.E1877 133FIG.1ThermalEnduranceCurveE1877 134APPENDIX(Nonmandatory Information)X1. EXAMPLE CALCULATIONSX1.1 Example Calculations for the Values Determined inTh

37、is StandardX1.1.1 Example data obtained from Test Method E1641includes:X1.1.1.1 E = 320 kJ/mol = 320 000 J/molX1.1.1.2 E = 24 kJ/mol = 24 000 J/molX1.1.1.3 R = 8.31451 J/(mol K)X1.1.1.4 = 5.0 K/minX1.1.2 Example data obtained from Test Method E2550includes:X1.1.2.1 Tc= 783 KX1.1.2.2 Tc=6KX1.1.3 Arbi

38、trarily selected:X1.1.3.1 tf= 60 000 hr = 3 600 000 min = 6.8 yrX1.1.3.2 Tr= 683 KX1.1.3.3 tr= 100 000 hr = 6 000 000 min = 11 yrX1.2 Example Calculations for Thermal Index (TI)X1.2.1 Determine the value for E/RT from values inX1.1.1.1, X1.1.1.3, and X1.1.2.1:ERT 5 320 000 J mol!8.31451 J/ mol K! 37

39、83 K#5 49.1532X1.2.2 Using the value of E/RT from X1.2.1, determine thevalue for a by interpolation in Table 1:a 5 24.7471X1.2.3 Substitute values from X1.1.1.1, X1.1.1.3, X1.1.1.4,X1.1.3.1, and X1.2.2 into Eq 1:TI 5 E2.303 R $log tf# 2 logE R !#1a%!5 $320 000 J mol 2.303 3 8.314 J mol K!%$log 3.6 3

40、 106min#2log320 000 J mol 8.31451 J mol K! 35 Kmin!#2 24.7471%5 $16 712 K%$6.5563 2 log 7697.39 min# 2 24.7471%5 16 712 K$6.5563 2 3.8863 2 24.7471%5 16 712 K27.4171TI 5 609.5 K 5 336.3 CX1.3 Example Calculation for the Imprecision in Ther-mal IndexX1.3.1 Substituting values from X1.1.1.2 and X1.1.1

41、.3 intoEq 2:TI 51.2 EE51.2 324 000 Jmol320 000 Jmol50.090X1.4 Example Calculation for Thermal EnduranceX1.4.1 Substituting the values from X1.1.1.1, X1.1.1.3,X1.1.1.4, X1.1.3.2, and X1.2.2 into Eq 3:logtf# 5 E2.303 RT1 log E R # 2 a#5 320 000 Jmol2.303 3 683 K!1log320 000 J mol 8.31451 J mol K#224.7

42、471 35 Kmin5 24.46801log7697.39# 2 24.74715 24.468013.8863 2 24.7471logtf# 5 3.6072tf5 4048 min 5.67.46 hrX1.5 Example Calculation of the Imprecision in ThermalEndurance (tf)X1.5.1 Substituting value from X1.1.1.1, X1.1.1.2,X1.1.1.3, X1.1.3.2, and X1.2.2 into Eq 4:tftf5 1 1 0.052 E RT! 3 EE5 1 1 0.0

43、52 3 320 000 J mol! 8.31451 J mol K 3 683 K!#324 000 Jmol320 000 Jmol5 1 1 2.930! 30.0755 3.930 30.0755 0.29X1.6 Example Calculation of Relative Thermal IndexX1.6.1 Substituting values from X1.1.1.1, X1.1.1.3,X1.1.3.1, X1.1.3.2, and X1.1.3.3 into Eq 5:RTI 5 ER$ln tf# 2 lntr#1ERTr#%5 320 00 Jmol 8.31

44、451JmolK$ln 3 600 000 min#2ln6 000 000 min#1320 000 Jmol K 8.31451 J mol K 3 683 K!%5 38 487 K15.0964 2 15.6073 1 56.3706!5 38 487 K55.85975 689 KX1.7 Example Calculation of the Standard Deviation ofRelative Thermal IndexX1.7.1 Substituting values from X1.1.1.1 and X1.1.1.2 intoEq 6:RTIRTI 51.4 324

45、000 Jmol320 000 Jmol50.105E1877 135REFERENCES(1) Flynn, J. H., and Wall, L. A., “A Quick, Direct Method for theDetermination of Activation Energy from Thermogravimetic Data,”Polymer Letters, Vol 4, 1966, pp. 323328.(2) Blaine, R. L., and Hahn, B. K., “Obtaining Kinetic Parameters byModulated Thermog

46、ravimetry,” Journal of Thermal Analysis, Vol 54,1998, pp. 695704.(3) Toop, D. J., “Theory of Life Testing and Use of ThermogravimetricAnalysis to Predict the Thermal Life of Wire Enamels,” IEEETransactions on Electrical Insulation, Vol EI-6, No. 1, 1971, pp. 214.(4) Flynn, J. H., “The Isoconverssion

47、al Method for Determination ofEnergy of Activation at Constant Rates Corrections for the DoyleApproximation,” Journal of Thermal Analysis, Vol 27, 1983, pp.95102.(5) Krizanovsky, L., and Mentlik, V., “The Use of Thermal Analysis toPredict the Thermal Life of Organic Electrical Insulating Materials,”

48、Journal of Thermal Analysis, Vol 13, 1978, pp. 571580.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent r

49、ights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addre

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1