ASTM E1921-2009ce2 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf

上传人:twoload295 文档编号:529806 上传时间:2018-12-05 格式:PDF 页数:22 大小:386.55KB
下载 相关 举报
ASTM E1921-2009ce2 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf_第1页
第1页 / 共22页
ASTM E1921-2009ce2 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf_第2页
第2页 / 共22页
ASTM E1921-2009ce2 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf_第3页
第3页 / 共22页
ASTM E1921-2009ce2 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf_第4页
第4页 / 共22页
ASTM E1921-2009ce2 Standard Test Method for Determination of Reference Temperature To for Ferritic Steels in the Transition Range.pdf_第5页
第5页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: E1921 09c2Standard Test Method forDetermination of Reference Temperature, To, for FerriticSteels in the Transition Range1This standard is issued under the fixed designation E1921; the number immediately following the designation indicates the year oforiginal adoption or, in the case of

2、revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTE9.3 and 8.7.2 were editorially corrected in December 2009.2NOTEEquation references were editorially upd

3、ated in March 2010.1. Scope1.1 This test method covers the determination of a referencetemperature, To, which characterizes the fracture toughness offerritic steels that experience onset of cleavage cracking atelastic, or elastic-plastic KJcinstabilities, or both. The specifictypes of ferritic steel

4、s (3.2.1) covered are those with yieldstrengths ranging from 275 to 825 MPa (40 to 120 ksi) andweld metals, after stress-relief annealing, that have 10 % orless strength mismatch relative to that of the base metal.1.2 The specimens covered are fatigue precracked single-edge notched bend bars, SE(B),

5、 and standard or disk-shapedcompact tension specimens, C(T) or DC(T). A range ofspecimen sizes with proportional dimensions is recommended.The dimension on which the proportionality is based isspecimen thickness.1.3 Median KJcvalues tend to vary with the specimen typeat a given test temperature, pre

6、sumably due to constraintdifferences among the allowable test specimens in 1.2. Thedegree of KJcvariability among specimen types is analyticallypredicted to be a function of the material flow properties (1)2and decreases with increasing strain hardening capacity for agiven yield strength material. T

7、his KJcdependency ultimatelyleads to discrepancies in calculated Tovalues as a function ofspecimen type for the same material. Tovalues obtained fromC(T) specimens are expected to be higher than Tovaluesobtained from SE(B) specimens. Best estimate comparisons ofseveral materials indicate that the av

8、erage difference betweenC(T) and SE(B)-derived Tovalues is approximately 10C (2).C(T) and SE(B) Todifferences up to 15C have also beenrecorded (3). However, comparisons of individual, smalldatasets may not necessarily reveal this average trend. Datasetswhich contain both C(T) and SE(B) specimens may

9、 generateToresults which fall between the Tovalues calculated usingsolely C(T) or SE(B) specimens. It is therefore stronglyrecommended that the specimen type be reported along withthe derived Tovalue in all reporting, analysis, and discussion ofresults. This recommended reporting is in addition to t

10、herequirements in 11.1.1.1.4 Requirements are set on specimen size and the numberof replicate tests that are needed to establish acceptablecharacterization of KJcdata populations.1.5 Tois dependent on loading rate. Tois evaluated for aquasi-static loading rate range with 0.1 2MPa=m/s).1.6 The statis

11、tical effects of specimen size on KJcin thetransition range are treated using weakest-link theory (4)applied to a three-parameter Weibull distribution of fracturetoughness values. A limit on KJcvalues, relative to thespecimen size, is specified to ensure high constraint conditionsalong the crack fro

12、nt at fracture. For some materials, particu-larly those with low strain hardening, this limit may not besufficient to ensure that a single-parameter (KJc) adequatelydescribes the crack-front deformation state (5).1.7 Statistical methods are employed to predict the transi-tion toughness curve and spe

13、cified tolerance bounds for 1Tspecimens of the material tested. The standard deviation of thedata distribution is a function of Weibull slope and median KJc.The procedure for applying this information to the establish-ment of transition temperature shift determinations and theestablishment of tolera

14、nce limits is prescribed.1.8 The fracture toughness evaluation of nonuniform mate-rial is not amenable to the statistical analysis methods em-ployed in this standard. Materials must have macroscopicallyuniform tensile and toughness properties. For example, multi-pass weldments can create heat-affect

15、ed and brittle zones withlocalized properties that are quite different from either the bulkmaterial or weld. Thick section steel also often exhibits somevariation in properties near the surfaces. Metallography andinitial screening may be necessary to verify the applicability ofthese and similarly gr

16、aded materials. Particular notice should1This test method is under the jurisdiction of ASTM Committee E08 on Fatigueand Fracture and is the direct responsibility of E08.07 on Fracture Mechanics.Current edition approved June 15, 2009. Published August 2009. Originallyapproved in 1997. Last previous e

17、dition approved in 2009 as E1921 09b. DOI:10.1520/E1921-09C.2The boldface numbers in parentheses refer to the list of references at the end ofthis standard.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.be given to the 2% and 98% to

18、lerance bounds on KJcpresentedin 9.3. Data falling outside these bounds may indicate nonuni-form material properties.1.9 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priat

19、e safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3E4 Practices for Force Verification of Testing MachinesE8/E8M Test Methods for Tension Testing of MetallicMaterialsE23 Test Methods for Notched Bar Impact

20、Testing ofMetallic MaterialsE74 Practice of Calibration of Force-Measuring Instru-ments for Verifying the Force Indication of Testing Ma-chinesE208 Test Method for Conducting Drop-Weight Test toDetermine Nil-Ductility Transition Temperature of FerriticSteelsE399 Test Method for Linear-Elastic Plane-

21、Strain FractureToughness KIcof Metallic MaterialsE436 Test Method for Drop-Weight Tear Tests of FerriticSteelsE561 Test Method for K-R Curve DeterminationE1820 Test Method for Measurement of Fracture Tough-nessE1823 Terminology Relating to Fatigue and Fracture Test-ing3. Terminology3.1 Terminology g

22、iven in Terminology E1823 is applicableto this test method.3.2 Definitions:3.2.1 ferritic steelsare typically carbon, low-alloy, andhigher alloy grades. Typical microstructures are bainite, tem-pered bainite, tempered martensite, and ferrite and pearlite.Allferritic steels have body centered cubic c

23、rystal structures thatdisplay ductile-to-cleavage transition temperature fracturetoughness characteristics. See also Test Methods E23, E208and E436.NOTE 1This definition is not intended to imply that all of the manypossible types of ferritic steels have been verified as being amenable toanalysis by

24、this test method.3.2.2 stress-intensity factor, KFL 3/2the magnitude ofthe mathematically ideal crack-tip stress field coefficient (stressfield singularity) for a particular mode of crack-tip regiondeformation in a homogeneous body.3.2.3 DiscussionIn this test method, Mode I is assumed.See Terminolo

25、gy E1823 for further discussion.3.2.4 J-integral, JFL1a mathematical expression; aline or surface integral that encloses the crack front from onecrack surface to the other; used to characterize the localstress-strain field around the crack front (6). See TerminologyE1823 for further discussion.3.3 D

26、efinitions of Terms Specific to This Standard:3.3.1 control force, PmFa calculated value of maximumforce used in Test Method E1820, Eqs. A1.1 and A2.1 tostipulate allowable precracking limits.3.3.1.1 DiscussionIn this method, Pmis not used forprecracking, but is used as a minimum force value above w

27、hichpartial unloading is started for crack growth measurement.3.3.2 crack initiationdescribes the onset of crack propa-gation from a preexisting macroscopic crack created in thespecimen by a stipulated procedure.3.3.3 effective modulus, EeFL2an elastic modulus thatcan be used with experimentally det

28、ermined elastic complianceto effect an exact match to theoretical (modulus-normalized)compliance for the actual initial crack size, ao.3.3.4 effective yield strength, sYFL-2, an assumed valueof uniaxial yield strength that represents the influence of plasticyielding upon fracture test parameters.3.3

29、.4.1 DiscussionIt is calculated as the average of the 0.2% offset yield strength sYS, and the ultimate tensile strength,sTSas follows:sY5 sYS1sTS!23.3.5 elastic modulus, E8FL2a linear-elastic factor re-lating stress to strain, the value of which is dependent on thedegree of constraint. For plane str

30、ess, E8 = E is used, and forplane strain, E/(1 v2) is used, with E being Youngs modulusand v being Poissons ratio.3.3.6 elastic plastic JcFL1J-integral at the onset ofcleavage fracture.3.3.7 elastic-plastic KJFL3/2An elastic-plastic equiva-lent stress intensity factor derived from the J-integral.3.3

31、.7.1 DiscussionIn this test method, KJalso implies astress intensity factor determined at the test termination pointunder conditions determined to be invalid by 8.9.2.3.3.8 elastic-plastic KJcFL3/2an elastic-plastic equiva-lent stress intensity factor derived from the J-integral at thepoint of onset

32、 of cleavage fracture, Jc.3.3.9 equivalent value of median toughness, KJcmed!eqFL-3/2an equivalent value of the median toughness for amulti-temperature data set.3.3.10 Eta (h)a dimensionless parameter that relates plas-tic work done on a specimen to crack growth resistance definedin terms of deforma

33、tion theory J-integral (7).3.3.11 failure probability, pfthe probability that a singleselected specimen chosen at random from a population ofspecimens will fail at or before reaching the KJcvalue ofinterest.3.3.12 initial ligament length, boL the distance from theinitial crack tip, ao, to the back f

34、ace of a specimen.3.3.13 load-line displacement rate,DLLLT-1rate of in-crease of specimen load-line displacement.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the

35、 standards Document Summary page onthe ASTM website.E1921 09c223.3.14 pop-ina discontinuity in a force versus displace-ment test record (8).3.3.14.1 DiscussionApop-in event is usually audible, andis a sudden cleavage crack initiation event followed by crackarrest.Atest record will show increased dis

36、placement and dropin applied force if the test frame is stiff. Subsequently, the testrecord may continue on to higher forces and increased dis-placement.3.3.15 precracked Charpy specimenSE(B) specimen withW = B = 10 mm (0.394 in.).3.3.16 provisional reference temperature, (ToQ) CInterim Tovalue calc

37、ulated using the standard test methoddescribed herein. If all validity criteria are met then To=ToQ3.3.17 reference temperature, ToCThe test temperatureat which the median of the KJcdistribution from 1T sizespecimens will equal 100 MPa=m (91.0 ksi=in.).3.3.18 SE(B) specimen span, SLthe distance betw

38、eenspecimen supports (See Test Method E1820 Fig. 3).3.3.19 specimen thickness, BLthe distance between theparallel sides of a test specimen as depicted in Figs. 1-3.3.3.19.1 DiscussionIn the case of side-grooved speci-mens, the net thickness, BN, is the distance between the roots ofthe side-groove no

39、tches.3.3.20 specimen size, nTa code used to define specimendimensions, where n is expressed in multiples of 1 in.3.3.20.1 DiscussionIn this method, specimen proportion-ality is required. For compact specimens and bend bars,specimen thickness B=ninches.3.3.21 temperature, To,XestCestimated value of

40、the refer-ence temperature corresponding to an elevated loading rate X,to be used only for test temperature selection in accordancewith 8.4.2.3.3.22 temperature, TQCFor KJcvalues that are devel-oped using specimens or test practices, or both, that do notconform to the requirements of this test metho

41、d, a temperatureat which KJc (med)= 100 MPa=m is defined as TQ.TQis not aprovisional value of To.3.3.23 test loading rate KFL-3/2T-1rate of increase ofapplied stress intensity factor.3.3.23.1 DiscussionIt is generally evaluated as the ratiobetween KJcand the corresponding time to cleavage. For tests

42、where partial unloading/reloading sequences are used to mea-sure compliance, an equivalent time to cleavage tcshall be usedto calculate the loading rate. The value of tcis calculated as theratio between the value of load-line displacement at cleavageand the load-line displacement rate applied during

43、 the mono-tonic loading portions of the test (that is, the periods betweenpartial unloading/reloading sequences used for compliancemeasurement).3.3.24 time to control force, tmT,time to Pm.3.3.25 Weibull fitting parameter, K0a scale parameterlocated at the 63.2 % cumulative failure probability level

44、 (9).KJc=K0when pf= 0.632.3.3.26 Weibull slope, bwith pfand KJcdata pairs plotted inlinearized Weibull coordinates obtainable by rearranging Eq18, b is the slope of a line that defines the characteristics of thetypical scatter of KJcdata.3.3.26.1 DiscussionA Weibull slope of 4 is used exclu-sively i

45、n this method.3.3.27 yield strength, sYSFL2the stress at which amaterial exhibits a specific limiting deviation from the propor-tionality of stress to strain at the test temperature. Thisdeviation is expressed in terms of strain.3.3.27.1 Discussion1 It is customary to determine yieldstrength by eith

46、er (1) Offset Method (usually a strain of 0.2 %is specified) or (2) Total-Extension-Under-Force Method (usu-ally a strain of 0.5 % is specified although other values of strainmay be used).3.3.27.2 Discussion2 Whenever yield strength is speci-fied, the method of test must be stated along with the per

47、centoffset or total strain under force. The values obtained by thetwo methods may differ.4. Summary of Test Method4.1 This test method involves the testing of notched andfatigue precracked bend or compact specimens in a tempera-ture range where either cleavage cracking or crack pop-indevelop during

48、the loading of specimens. Crack aspect ratio,a/W, is nominally 0.5. Specimen width in compact specimensis two times the thickness. In bend bars, specimen width can beeither one or two times the thickness.4.2 Force versus displacement across the notch at a speci-fied location is recorded by autograph

49、ic recorder or computerdata acquisition, or both. Fracture toughness is calculated at adefined condition of crack instability. The J-integral value atinstability, Jc, is calculated and converted into its equivalent inunits of stress intensity factor, KJc. Validity limits are set on thesuitability of data for statistical analyses.4.3 Tests that are replicated at least six times can be used toestimate the median KJcof the Weibull distribution for the datapopulation (10). E

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1