ASTM E844-2009(2014)e2 9082 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance《反应堆监测用传感器装置设计和辐照的标准指南》.pdf

上传人:deputyduring120 文档编号:533656 上传时间:2018-12-06 格式:PDF 页数:8 大小:205.02KB
下载 相关 举报
ASTM E844-2009(2014)e2 9082 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance《反应堆监测用传感器装置设计和辐照的标准指南》.pdf_第1页
第1页 / 共8页
ASTM E844-2009(2014)e2 9082 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance《反应堆监测用传感器装置设计和辐照的标准指南》.pdf_第2页
第2页 / 共8页
ASTM E844-2009(2014)e2 9082 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance《反应堆监测用传感器装置设计和辐照的标准指南》.pdf_第3页
第3页 / 共8页
ASTM E844-2009(2014)e2 9082 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance《反应堆监测用传感器装置设计和辐照的标准指南》.pdf_第4页
第4页 / 共8页
ASTM E844-2009(2014)e2 9082 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance《反应堆监测用传感器装置设计和辐照的标准指南》.pdf_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: E844 09 (Reapproved 2014)2Standard Guide forSensor Set Design and Irradiation for Reactor Surveillance1This standard is issued under the fixed designation E844; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

2、of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEFigures 1 and 2 were updated and editorial changes were made in September 2014.2NOTEThe title and Referenced Documents wer

3、e udpated in May 2017.1. Scope1.1 This guide covers the selection, design, irradiation,post-irradiation handling, and quality control of neutron do-simeters (sensors), thermal neutron shields, and capsules forreactor surveillance neutron dosimetry.1.2 The values stated in SI units are to be regarded

4、 asstandard. Values in parentheses are for information only.1.3 This standard does not purport to address all of thesafety problems, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-b

5、ility of regulatory limitations prior to use.1.4 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the

6、World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2E170 Terminology Relating to Radiation Measurements andDosimetryE261 Practice for Determining Neutron Fluence, FluenceRate, and Spectra by Radioactivation TechniquesE854 Test Method for App

7、lication and Analysis of SolidState Track Recorder (SSTR) Monitors for Reactor Sur-veillanceE910 Test Method for Application and Analysis of HeliumAccumulation Fluence Monitors for Reactor Vessel Sur-veillanceE1005 Test Method for Application and Analysis of Radio-metric Monitors for Reactor Vessel

8、SurveillanceE1018 Guide for Application of ASTM Evaluated CrossSection Data FileE1214 Guide for Use of Melt Wire Temperature Monitorsfor Reactor Vessel SurveillanceE2005 Guide for Benchmark Testing of Reactor Dosimetryin Standard and Reference Neutron FieldsE2006 Guide for Benchmark Testing of Light

9、 Water ReactorCalculations3. Terminology3.1 Definitions:3.1.1 neutron dosimeter, sensor, monitora substance irra-diated in a neutron environment for the determination ofneutron fluence rate, fluence, or spectrum, for example: radio-metric monitor (RM), solid state track recorder (SSTR), heliumaccumu

10、lation fluence monitor (HAFM), damage monitor(DM), temperature monitor (TM).3.1.2 thermal neutron shielda substance (that is,cadmium, boron, gadolinium) that filters or absorbs thermalneutrons.3.2 For definitions or other terms used in this guide, refer toTerminology E170.4. Significance and Use4.1

11、In neutron dosimetry, a fission or non-fission dosimeter,or combination of dosimeters, can be used for determining afluence rate, fluence, or neutron spectrum in nuclear reactors.Each dosimeter is sensitive to a specific energy range, and, ifdesired, increased accuracy in a fluence-rate spectrum can

12、 beachieved by the use of several dosimeters each coveringspecific neutron energy ranges.4.2 A wide variety of detector materials is used for variouspurposes. Many of these substances overlap in the energy ofthe neutrons which they will detect, but many differentmaterials are used for a variety of r

13、easons. These reasonsinclude available analysis equipment, different cross sectionsfor different fluence-rate levels and spectra, preferred chemicalor physical properties, and, in the case of radiometric1This guide is under the jurisdiction of ASTM Committee E10 on NuclearTechnology and Applications

14、and is the direct responsibility of SubcommitteeE10.05 on Nuclear Radiation Metrology.Current edition approved June 1, 2014. Published July 2014. Originally approvedin 1981. Last previous edition approved in 2009 as E844 09. DOI: 10.1520/E0844-09R14E01.2For referenced ASTM standards, visit the ASTM

15、website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United S

16、tatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to

17、Trade (TBT) Committee.1dosimeters, varying requirements for different half-lifeisotopes, possible interfering activities, and chemical separa-tion requirements.5. Selection of Neutron Dosimeters and Thermal NeutronShields5.1 Neutron Dosimeters:5.1.1 The choice of dosimeter material depends largely o

18、nthe dosimetry technique employed, for example, radiometricmonitors, helium accumulation monitors, track recorders, anddamage monitors.At the present time, there is a wide variety ofdetector materials used to perform neutron dosimetry measure-ments. These are generally in the form of foils, wires, p

19、owders,and salts. The use of alloys is valuable for certain applicationssuch as (1) dilution of high cross-section elements, (2) prepa-ration of elements that are not readily available as foils or wiresin the pure state, and (3) preparation to permit analysis of morethan one dosimeter material.5.1.2

20、 For neutron dosimeters, the reaction rates are usuallydeduced from the absolute gamma-ray radioanalysis (thereexist exceptions, such as SSTRs, HAFMs, damage monitors).Therefore, the radiometric dosimeters selected must havegamma-ray yields known with good accuracy (98 %). Thehalf-life of the produc

21、t nuclide must be long enough to allowfor time differences between the end of the irradiation and thesubsequent counting. Refer to Method E1005 for nuclear decayand half-life parameters.5.1.3 The neutron dosimeters should be sized to permitaccurate analysis. The range of high efficiency countingequi

22、pment over which accurate measurements can be per-formed is restricted to several decades of activity levels (5 to 7decades for radiometric and SSTR dosimeters, 8 decades forHAFMs). Since fluence-rate levels at dosimeter locations canrange over 2 or 3 decades in a given experiment and over 10decades

23、 between low power and high power experiments, theproper sizing of dosimeter materials is essential to assureaccurate and economical analysis.5.1.4 The estimate of radiometric dosimeter activity levelsat the time of counting include adjustments for the decay of theproduct nuclide after irradiation a

24、s well as the rate of productnuclide buildup during irradiation. The applicable equation forsuch calculations is (in the absence of fluence-rate perturba-tions) as follows:A 5 No1 2 e2t1!e2t2! (1)where:A = expected disintegration rate (dps) for the productnuclide at the time of counting,No= number o

25、f target element atoms, = estimated fluence-rate density level, = spectral averaged cross section, = product of the nuclide fraction and (if applicable)of the fission yield,1e-t1= buildup of the nuclide during the irradiationperiod, t1,e-t2= decay after irradiation to the time of counting, t2,and =

26、decay constant for the product nuclide.5.1.5 For SSTRs and HAFMs, the same type of informationas for radiometric monitors (that is, total number of reactions)is provided. The difference being that the end products (fissiontracks or helium) requires no time-dependent corrections andare therefore part

27、icularly valuable for long-term irradiations.5.1.6 Fission detectors shall be chosen that have accuratelyknown fission yields. Refer to Method E1005.5.1.7 In thermal reactors the correction for neutron selfshielding can be appreciable for dosimeters that have highlyabsorbing resonances (see 6.1.1).5

28、.1.8 Dosimeters that produce activation or fission products(that are utilized for reaction rate determinations) with half-lives that are short compared to the irradiation duration shouldnot be used. Generally, radionuclides with half-lives less thanthree times the irradiation duration should be avoi

29、ded unlessthere is little or no change in neutron spectral shape or fluencerate with time.5.1.9 Tables 1-3 present various dosimeter elements. Listedare the element of interest, the nuclear reaction, and theavailable forms. For the intermediate energy region, the ener-gies of the principal resonance

30、s are listed in order of increasingenergy. In the case of the fast neutron energy region, the 95 %response ranges (an energy range that includes most of theresponse for each dosimeter is specified by giving the energiesE05below which 5 % of the activity is produced and E95abovewhich 5 % of the activ

31、ity is produced) for the235U neutronthermal fission spectrum are included.5.2 Thermal Neutron Shields:5.2.1 Shield materials are frequently used to eliminateinterference from thermal neutron reactions when resonanceand fast neutron reactions are being studied. Cadmium iscommonly used as a thermal ne

32、utron shield, generally 0.51 to1.27 mm (0.020 to 0.050 in.) thick. However, because elemen-tal cadmium (m.p. = 320C) will melt if placed within thevessel of an operating water reactor, effective thermal neutronfilters must be chosen that will withstand high temperatures oflight-water reactors. High-

33、temperature filters include cadmiumoxide (or other cadmium compounds or mixtures), boron(enriched in the10B isotope), and gadolinium. The thickness ofthe shield material must be selected to account for burnoutfrom high fluences.TABLE 1 Dosimeter ElementsThermal Neutron RegionElement ofInterestNuclea

34、r Reaction Available FormsB10B(n,)7Li B, B4C, B-Al, B-NbCo59Co(n,)60Co Co, Co-Al, Co-ZrCu63Cu(n,)64Cu Cu, Cu-Al, Cu(NO3)2Au197Au(n,)198Au Au, Au-AlIn115In(n,)116mIn In, In-AlFe58Fe(n,)59Fe FeFe54Fe(n,)55Fe FeLi6Li(n,)3H LiF, Li-AlMn55Mn(n,)56Mn alloysNi58Ni(n,)59Ni(n,)56Fe NiPu239Pu(n,f)FP PuO2, all

35、oysSc45Sc(n,)46Sc Sc, Sc2O3Ag109Ag(n,)110mAg Ag, Ag-Al, AgNO3Na23Na(n,)24Na NaCl, NaF, NaITa181Ta(n,)182Ta Ta, Ta2O5U (enriched)235U(n,f)FP U, U-Al, UO2,U3O8, alloysE844 09 (2014)225.2.2 In reactors, feasible dosimeters to date whose responserange to neutron energies of 1 to 3 MeV includes the fissi

36、onmonitors238U,237Np, and232Th. These particular dosimetersmust be shielded from thermal neutrons to reduce fissionproduct production from trace quantities of235U,238Pu,and239Pu and to suppress buildup of interfering fissionablenuclides, for example,238Np and238Pu in the237Np dosimeter,239Pu in the2

37、38U dosimeter, and233Uinthe232Th dosimeter.Thermal neutron shields are also necessary for epithermalspectrum measurements in the 5 107to 0.3-MeV energyrange. Also, nickel dosimeters used for the fast activationreaction58Ni(n,p)58Co must be shielded from thermal neutronsin nuclear environments having

38、 thermal fluence rates aboveTABLE 2 Dosimeter ElementsIntermediate Neutron RegionEnergy of PrincipalResonance, eV(17)Dosimetry Reactions Element of Interest Available FormsA 6Li(n,)3H Li LiF, Li-AlA 10B(n,)7Li B B, B4C, B-Al, B-NbA 58Ni(n,)59Ni(n,)56Fe Ni Ni1.457115In(n,)116mIn In In, In-Al4.28181Ta

39、(n,)182Ta Ta Ta, Ta2O54.906197Au(n,)198Au Au Au, Au-Al5.19109Ag(n,)110mAg Ag Ag, Ag-Al, AgNO321.806232Th(n,)233Th Th Th, ThO2, Th(NO3)4B 235U(n,f)FP U U, U-Al, UO2,U3O8, alloys13259Co(n,)60Co Co Co, Co-Al, Co-Zr103858Fe(n,)59Fe Fe Fe337.355Mn(n,)56Mn Mn alloys57963Cu(n,)64Cu Cu Cu, Cu-Al, Cu(NO3)20.

40、2956243239Pu(n,f)FP Pu PuO2, alloys281023Na(n,)24Na Na NaCl, NaF, NaI329545Sc(n,)46Sc Sc Sc, Sc2O3778854Fe(n,)55Fe Fe FeAThis reaction has no resonance that contributes in the intermediate energy region and the principle resonance has negative energy (i.e. the cross section is 1/v).BMany resonances

41、contribute in the 1 100 eV region for this reaction.TABLE 3 Dosimeter ElementsFast Neutron RegionDosimetryReactionsElement ofInterestEnergy Response Range (MeV)A,BCross SectionUncertainty(%)A,CAvailableFormsLowE05MedianE50HighE95237Np(n,f)FP Np 0.684 1.96 5.61 9.34 Np2O3, alloys103Rh(n,n)103mRh Rh 0

42、.731 2.25 5.73 3.10 Rh93Nb(n,n)93mNb Nb 0.951 2.57 5.79 3.01 Nb, Nb2O5115In(n,n)115mIn In 1.12 2.55 5.86 2.16 In, In-Al14N(n,)11B N 1.75 3.39 5.86 TiN, ZrN, NbN238U(n,f)FP U (depleted) 1.44 2.61 6.69 0.319 U, U-Al, UO3,U3O8, alloys232Th(n,f)FP Th 1.45 2.79 7.21 5.11 Th, ThO29Be(n,)6Li Be 1.59 2.83 5

43、.26 Be47Ti(n,p)47Sc Ti 1.70 3.63 7.67 3.77 Ti58Ni(n,p)58Co Ni 1.98 3.94 7.51 2.44 Ni, Ni-Al54Fe(n,p)54Mn Fe 2.27 4.09 7.54 2.12 Fe32S(n,p)32P S 2.28 3.94 7.33 3.63 CaSO4,Li2SO432S(n,)29Si S 1.65 3.12 6.06 Cu2S, PbS58Ni(n,)55Fe Ni 2.74 5.16 8.72 Ni, Ni-Al46Ti(n,p)46Sc Ti 3.70 5.72 9.43 2.48 Ti56Fe(n,

44、p)56Mn FeD5.45 7.27 11.3 2.26 Fe56Fe(n,)53Cr Fe 5.19 7.53 11.3 Fe63Cu(n,)60Co CuE4.53 6.99 11.0 2.36 Cu, Cu-Al27Al(n,)24Na Al 6.45 8.40 11.9 1.19 Al, Al2O348Ti(n,p)48Sc Ti 5.92 8.06 12.3 2.56 Ti47Ti(n,)44Ca Ti 2.80 5.10 9.12 Ti60Ni(n,p)60Co NiE4.72 6.82 10.8 10.3 Ni, Ni-Al55Mn(n,2n)54Mn MnF11.0 12.6

45、 15.8 13.54 alloysAEnergy response range was derived using the ENDF/B-VI235U fission spectrum, Ref (1), MT = 9228, MF = 5, MT = 18. The cross section and associated covariancesources are identified in Guide E1018 and in Refs (2,3).BOne half of the detector response occurs below an energy given by E5

46、0; 95 % of the detector response occurs below E95and 5 % below E05.CUncertainty metric only reflects that component due to the knowledge of the cross section and is reported at the 1 level.DLow manganese content necessary.ELow cobalt content necessary.FLow iron content necessary.E844 09 (2014)233101

47、2ncm2s1to prevent significant loss of58Co and58mCo by thermal neutron burnout (4).36. Design of Neutron Dosimeters, Thermal NeutronShields, and Capsules6.1 Neutron DosimetersProcedures for handling dosim-eter materials during preparation must be developed to ensurepersonnel safety and accurate nucle

48、ar environment character-ization. During dosimeter fabrication, care must be taken inorder to achieve desired neutron fluence-rate results, especiallyin the case of thermal and resonance-region dosimeters. Anumber of factors must be considered in the design of adosimetry set for each particular appl

49、ication. Some of theprincipal ones are discussed individually as follows:6.1.1 Self-Shielding of NeutronsThe neutron self-shielding phenomenon occurs when high cross-section atomsin the outer layers of a dosimeter reduce the neutron fluencerate to the point where it significantly affects the activation ofthe inner atoms of the material. This is especially true ofmaterials with high thermal cross sections and essentially allresonance detectors. This can be minimized by using lowweight pe

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1