ASTM E906-2009 1875 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method.pdf

上传人:figureissue185 文档编号:533755 上传时间:2018-12-06 格式:PDF 页数:26 大小:571.65KB
下载 相关 举报
ASTM E906-2009 1875 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method.pdf_第1页
第1页 / 共26页
ASTM E906-2009 1875 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method.pdf_第2页
第2页 / 共26页
ASTM E906-2009 1875 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method.pdf_第3页
第3页 / 共26页
ASTM E906-2009 1875 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method.pdf_第4页
第4页 / 共26页
ASTM E906-2009 1875 Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method.pdf_第5页
第5页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: E906 09An American National StandardStandard Test Method forHeat and Visible Smoke Release Rates for Materials andProducts Using a Thermopile Method1This standard is issued under the fixed designation E906; the number immediately following the designation indicates the year oforiginal a

2、doption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method provides for determining the releaserates of heat an

3、d visible smoke (Note 1) from materials,products, or assemblies when exposed to different levels ofradiant heat.NOTE 1Visible smoke is described in terms of the obscuration oftransmitted light caused by combustion products released during the tests(see 14.2.1).1.2 This fire-test-response method asse

4、sses heat release by athermal method, thermopile, using a radiant heat sourcecomposed of an array of four electrical resistance elements.1.3 This test method provides for radiant thermal exposureof a specimen both with and without a pilot. Piloted ignitionresults from direct flame impingement on the

5、 specimen (pi-loted, point ignition) or from use of the pilot to ignite gasesevolved by pyrolysis of the specimen.1.4 Heat and smoke release are measured from the momentthe specimen is injected into a controlled exposure chamber.The measurements are continued during the period of ignition(and progre

6、ssive flame involvement of the surface in the caseof point ignition), and to such a time that the test is terminated.1.5 The apparatus described in this test method is oftenreferred to as the Ohio State University (OSU) rate of heatrelease apparatus. Configurations A and B are variations on theorigi

7、nal design.1.6 This test method is suitable for exposing essentiallyplanar materials, products or assemblies to a constant, imposedexternal heat flux that ranges from 0 to 80 kW/m2.1.7 This test method is intended for use in research anddevelopment and not as a basis for rating, regulatory, or codep

8、urposes.1.8 The apparatus described in this test method has beenused in two configurations. Configuration A is that which isused by the Federal Aviation Administration for assessingmaterials for aircraft use, at an external heat flux of 35 kW/m2(DOT/FAA/AR-00/12), while configuration B is suitable,

9、atvarious incident heat fluxes, for research and developmentpurposes.1.9 This test method does not provide information on thefire performance of the test specimens under fire conditionsother than those conditions specified in this test method.Known limitations of this test method are described in 1.

10、9.1-1.9.5.1.9.1 Heat and smoke release rates depend on a number offactors, including the formation of surface char, the formationof an adherent ash, sample thickness, and the method ofmounting.1.9.2 Heat release values are a function of the specificspecimen size (exposed area) tested. Results are no

11、t directlyscaleable to different exposed surface areas for some products.1.9.3 The test method is limited to the specified specimensizes of materials, products, or assemblies. If products are to betested, the test specimen shall be representative of the productin actual use. The test is limited to e

12、xposure of one surface; theoptions for exposed surface are vertical and horizontal facingup.1.9.4 At very high specimen heat release rates, it is possiblethat flaming is observed above the stack, which makes the testinvalid.1.9.5 No general relationship has been established betweenheat release rate

13、values obtained from horizontally and verti-cally oriented specimens. Specimens that melt and drip in thevertical orientation shall be tested horizontally.1.10 Use the SI system of units in referee decisions; seeIEEE/ASTM SI-10.1.11 Fire testing of products and materials is inherentlyhazardous, and

14、adequate safeguards for personnel and propertyshall be employed in conducting these tests. Fire testinginvolves hazardous materials, operations, and equipment. SeeSection 6.1This test method is under the jurisdiction of ASTM Committee E05 on FireStandards and is the direct responsibility of Subcommi

15、ttee E05.21 on Smoke andCombustion Products.Current edition approved Nov. 1, 2009. Published December 2009. Originallyapproved in 1983. Last previous edition approved in 2007 as E906 071. DOI:10.1520/E0906-09.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19

16、428-2959, United States.1.12 This standard is used to measure and describe theresponse or materials, products, or assemblies to heat andflame under controlled conditions, but does not by itselfincorporate all factors required for fire hazard or fire riskassessment of the materials, products, or asse

17、mblies underactual fire conditions.1.13 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limi

18、tations prior to use.2. Referenced Documents2.1 ASTM Standards:2D618 Practice for Conditioning Plastics for TestingE176 Terminology of Fire StandardsE1354 Test Method for Heat and Visible Smoke ReleaseRates for Materials and Products Using an Oxygen Con-sumption Calorimeter2.2 ISO Standard:ISO 13943

19、 Fire Safety-Vocabulary32.3 Federal Aviation Administration Standard:Aircraft Material Fire Test Handbook, DOT/FAA/AR-00/12, FAA Technical Center, April 200043. Terminology3.1 DefinitionsFor definitions of terms used in this testmethod refer to the terminology contained in TerminologyE176 and ISO 13

20、943, Fire Safety-Vocabulary. In case ofconflict, the definitions given in Terminology E176 shallprevail.3.2 Definitions of Terms Specific to This Standard:3.2.1 continuous, as related to data acquisition, adjconducted at data collection intervals of5sorless.3.2.2 exposed surface, nthat surface of th

21、e specimensubjected to the incident heat.3.2.3 gas phase ignition, nignition of pyrolysis productsleaving a heated surface by a pilot flame or other ignitionsource that does not impinge on, nor significantly affect, forexample, by reradiation, the heated surface.3.2.4 orientation, nplane in which th

22、e exposed face of thespecimen is located during testing, either vertical or horizon-tally face upwards.3.2.5 SMOKE unitthe concentration of smoke particulatesin a cubic metre of air that reduces the percent transmission oflight through a 1-m path to 10 %. SMOKE = Standard MetricOptical Kinetic Emiss

23、ion.3.2.6 time to ignition, ntime between the start of the testand the presence of a flame on or over most of the specimensurface for a period of at least 4 s.4. Summary of Test Method4.1 The specimen to be tested is injected into an environ-mental chamber through which a constant flow of air passes

24、.The specimens exposure is determined by a radiant heatsource adjusted to produce the desired total heat flux on thespecimen. Exposure options include: horizontal or verticalorientations; nonpiloted ignition, piloted ignition of evolvedgases, or point ignition of the surface. The changes in tempera-

25、ture and optical density of the gas leaving the chamber aremonitored, and from this data the release rates of heat andvisible smoke (see 14.2.1) are calculated.5. Significance and Use5.1 This test method provides a description of the behaviorof material specimens under a specified fire exposure in t

26、ermsof the release rate of heat and visible smoke. It is possible todetermine the change in behavior of materials and productswith change in heat-flux exposure by testing specimens in aseries of exposures that cover a range of heat fluxes.5.2 The data obtained for a specific test describe the rate o

27、fheat and smoke release of the specimen when exposed to thespecific environmental conditions and procedures used inperforming that test.5.3 The entire exposed surface of the specimen will not beburning during the progressive involvement phase when pi-loted, point ignition (impingement) procedures ar

28、e used. Dur-ing the period of progressive surface involvement, release ratesof heat and smoke are “per square metre of original exposedsurface area” not “per square metre of flame involved surface.”5.4 The rates of both heat and smoke release are calculatedper square metre of original surface area e

29、xposed. If aspecimen swells, sags, delaminates, or otherwise deforms sothat the exposed surface area changes, calculated release ratescorrespond to the original area, not to the new surface area.5.5 Heat-release values depend on mode of ignition. Gasphase ignition gives a more dimensionally consiste

30、nt measureof release rate when very rapid or immediate flame involve-ment of the specimen surface occurs. However, piloted, pointignition allows release-rate information to be obtained atexternal heat flux from zero up to that required for satisfactorygas-phase ignition, usually over 20 kW/m2externa

31、l exposure.No correlation between the two modes of piloted ignition hasbeen established.5.6 Release rates depend on many factors, some of whichcannot be controlled. It is possible that samples that produce asurface char, a layer of adherent ash, or those that arecomposites or laminates do not attain

32、 a steady-state releaserate. Thermally thin specimens, that is, specimens whoseunexposed surface changes temperature during period of test,will not attain a steady-state release rate. Therefore, releaserates for a given material will depend, for example, on how thematerial is used, its thickness, an

33、d the method of mounting.5.7 Heat-release values are for the specific specimen size(exposed area) tested. Results are not directly scalable todifferent exposed surface areas for some products.5.8 The method is limited to specimen sizes of materials inaccordance with 7.1 and to products from which it

34、 is possibleto obtain a test specimen representative of the product in actual2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page ont

35、he ASTM website.3Available from International Standardization Organization, P.O. Box 56,CH-1211, Geneva 20, Switzerland.4Available from National Technical Information Service (NTIS), Springfield,VA 22161. An electronic version of the handbook with the latest revisions can befound at the FAA website:

36、 http:/www.fire.tc.faa.gov/handbook.stm.E906 092use. The test is limited to exposure of one surface; there are twooptions for exposure orientation: either vertical or horizontal. Ifa heat release rate of 8 kW, which is equivalent to 355 kW/m2for 150 by 150-mm vertical specimens, or 533 kW/m2for 100b

37、y 150-mm horizontal specimens is exceeded, there is dangerof combustion occurring above the stack.5.9 No general relationship between release rate valuesobtained from horizontally and vertically oriented specimenshas been established. Conduct tests on specimens in the form inwhich the material is or

38、iented in end use conditions. To provideadditional information, conduct tests in the horizontal orienta-tion for those specimens that melt and drip in the verticalorientation.5.10 Release rate measurements provide useful informationfor product development by giving a quantitative measure ofspecific

39、changes in fire test performance caused by productmodifications.5.11 This test method differs in both the method of exposureand the calculation procedure from the techniques used in TestMethod E1354, the cone calorimeter, which assesses heatrelease by oxygen consumption calorimetry, using a truncate

40、dcone as a radiant source.6. Operator Safety6.1 The test procedure involves high temperatures, andcombustion processes. Therefore, it is possible for eye injuries,burns, ignition of extraneous objects or clothing, and inhalationof smoke or combustion products to occur, unless properprecautions are t

41、aken. To avoid accidental leakage of toxiccombustion products into the surrounding atmosphere, it isadvisable to evacuate the chamber, at the end of a test, into anexhaust system with adequate capacity. The operator must useheavy gloves, safety tongs or other suitable protection forremoval of the sp

42、ecimen holder. The venting must be checkedperiodically for proper operation. Care shall be takne not totouch the spark igniter during operation, if used, since it carriesa substantial potential. The exhaust system of the appartus shallbe checked for proper operation before testing and shalldischarge

43、 into a building exhaust system with adequate capac-ity. The possibility of the violent ejection of molten hotmaterial or sharp fragments from some kinds of specimenswhen irradiated must be taken into account.7. Sample Preparation7.1 The standard size for vertically mounted specimens is150 6 2mmby15

44、06 2 mm (6.0 6 0.06 in. by 6.0 6 0.06 in.)exposed surface with thickness up to 100 mm (4.0 in.). Thestandard size for horizontally mounted specimens is 100 6 2mm by 150 6 2 mm (6.0 6 0.06 in. by 6.0 6 0.06 in.) exposedsurface, up to 45 mm (1.75 in.) thick. Mount thin specimens,such as wall or floor

45、coverings, in the same manner as used.For example, test a wall covering to be glued to gypsum wallboard when glued to a section of gypsum board using the sametype of adhesive. The assembly shall be considered thespecimen to be tested. Applications requiring thicknessesgreater than 45 mm (1.75 in.) s

46、hall be tested at 45 mm (1.75in.) thicknesses.7.2 ConditioningCondition the specimens at 23 6 3C(70 6 5F) and 50 6 5 % relative humidity for a minimum of24 h prior to test, or as described by Procedure A of PracticeD618, if appropriate.7.3 MountingExpose only one surface of a specimenduring a test.

47、Insulate, on five sides, specimens that have a slabgeometry. A single layer of 0.025-mm (0.001 in.) aluminumfoil shall be wrapped tightly on all unexposed sides with thedull side of the foil facing the specimen surface. For productswhose exposed surface is not a plane, describe mounting andmethod of

48、 calculating surface area exposed when reportingresults.7.4 Specimen OrientationFor specimens with anisotropicproperties (meaning they have different properties in differentdirections such as machine and cross-machine directions forextrusions, wrap and fill for woven fabrics), the specimensshall be

49、tested in the orientation giving the highest results. Ifthis orientation is not known prior to test, two sets of at leastthree specimens each shall be prepared and tested, with one setoriented in one direction and the second set oriented in theother direction.8. Release Rate ApparatusConfiguration A8.1 The apparatus shown in Figs. 1 and 2 shall be used todetermine heat release rates. All exterior surfaces of theapparatus, except the holding chamber, shall be insulated with25 6 1mm(16 0.04 in.) thick, low-density, high-temperature,fiberglass board insulation.5,6A gas

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1