ASTM F1130-1999(2005) Standard Practice for Inspecting the Coating System of a Ship《船涂覆系统检验的标准实施规程》.pdf

上传人:proposalcash356 文档编号:534246 上传时间:2018-12-06 格式:PDF 页数:15 大小:425.88KB
下载 相关 举报
ASTM F1130-1999(2005) Standard Practice for Inspecting the Coating System of a Ship《船涂覆系统检验的标准实施规程》.pdf_第1页
第1页 / 共15页
ASTM F1130-1999(2005) Standard Practice for Inspecting the Coating System of a Ship《船涂覆系统检验的标准实施规程》.pdf_第2页
第2页 / 共15页
ASTM F1130-1999(2005) Standard Practice for Inspecting the Coating System of a Ship《船涂覆系统检验的标准实施规程》.pdf_第3页
第3页 / 共15页
ASTM F1130-1999(2005) Standard Practice for Inspecting the Coating System of a Ship《船涂覆系统检验的标准实施规程》.pdf_第4页
第4页 / 共15页
ASTM F1130-1999(2005) Standard Practice for Inspecting the Coating System of a Ship《船涂覆系统检验的标准实施规程》.pdf_第5页
第5页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F 1130 99 (Reapproved 2005)An American National StandardStandard Practice forInspecting the Coating System of a Ship1This standard is issued under the fixed designation F 1130; the number immediately following the designation indicates the year oforiginal adoption or, in the case of rev

2、ision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers a standard procedure for inspectingthe coating system of a ships topside and

3、superstructure, tanksand voids, decks and deck machinery, and underwater hull andboottop during drydocking. Included are a standard inspectionform to be used for reporting the inspection data, a diagramthat divides topside and superstructure individual inspectionareas, and a series of diagrams that

4、are used to report the extentof damage to the coating system.1.2 This practice is intended for use only by an experiencedmarine coating inspector.1.3 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are

5、provided for information onlyand are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-

6、bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 660 Test Method for Evaluating Degree of Checking ofExterior PaintsD 714 Test Method for Evaluating Degree of Blistering ofPaintsD 772 Test Method for Evaluating Degree of Flaking (Scal-ing) of Exterior Paints

7、2.2 Steel Structures Painting Council:SSPC-PA-2 Measurement of Dry Paint Thickness WithMagnetic Gages33. Significance and Use3.1 This practice establishes the procedure for the inspec-tion of coating systems on board ships. It contains a series ofdiagrams to be used to report the extent of damage to

8、 coatings.4. Reference Standards4.1 Extent of FailureThe overall extent of failure dia-grams (see Fig. 1) and the extent within affected area diagrams(see Fig. 2 and Fig. 3) are used to report the area covered byvarious fouling organisms, different types of corrosion, andpaint failures. The overall

9、extent of failure diagrams are usedfirst to group all areas where a particular type of damage hasoccurred into one contiguous block. The extent within affectedarea diagrams are then used to identify the pattern of damagewithin that contiguous block. (For example, inspection forSection I.A.General Co

10、rrosion (see Figs. 4-7) and generalcorrosion appears distributed over the entire inspection area asshown by the black areas in Fig. 8.)4.1.1 The first step is to draw an imaginary line that wouldenclose all of the general corrosion. This enclosure should beas small as possible. Select the diagram fr

11、om the overall extentof failure diagrams that most closely approximates the en-closed area with respect to the entire inspection area. Using thegeneral corrosion example, the enclosed area (shaded area)would closely match Fig. 9.4.1.2 Enter a “6” (for Diagram 6 in Fig. 1) in the box nextto I.A.1. ov

12、erall extent of failures in Fig. 4.4.1.3 The second step is to look at only the enclosed areaand select the diagram from the extent within affected-areadiagrams that most closely identifies the pattern of generalcorrosion in the enclosed area. In this example, Fig. 10(Diagram N) would be a good choi

13、ce.4.1.4 Enter an “N” (for Diagram N in Fig. 3) in the box nextto I.A.1.A. extent within the affected area.NOTE 1Selection of diagrams is based on visual comparisons, andtherefore, different inspectors may select different diagrams. The diagramsare designed to minimize these differences and enhance

14、reproducibility.4.2 Forms of Mechanical DamageThis reference standard(Fig. 11) is a series of photographs used to identify the variousforms of mechanical damage to a coating that can lead tocorrosion.1This practice is under the jurisdiction of ASTM Committee F25 on Ships andMarine Technology and is

15、the direct responsibility of Subcommittee F25.01 onStructures.Current edition approved May 1, 2005. Published May 2005. Originallyapproved in 1988. Last previous edition approved in 1999 as F 1130 99.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Servic

16、e at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Steel Structures Painting Council, 40 24th St., Pittsburgh, PA15222-4656.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West

17、Conshohocken, PA 19428-2959, United States.4.3 Types of CorrosionThis reference standard (Fig. 12)isa series of photographs used to show examples of generalcoating damage. Included could be general corrosion, pittingcorrosion, pin-point corrosion, galvanic corrosion/coating un-dercutting, cavitation

18、 corrosion, corrosion along welds, andrust staining.4.4 Levels of DelaminationThis reference standard (Fig.13) is a series of diagrams that identifies the levels in a coatingsystem where delamination can occur.5. Requirements for Inspectors5.1 The inspector must be able to perform the followingtasks

19、:5.1.1 Calibrate and use a magnetic gage to measure dry filmthickness (DFT).5.1.2 Use pH paper or pH meter properly.5.1.3 Use a camera properly.5.1.4 Recognize the various types of corrosion and forms ofpaint failures (blistering, delamination, and so forth).5.1.5 Recognize the various ship areas as

20、 described in Figs.14-16.6. Procedure6.1 The inspection form consists of two pages to be com-pleted by the inspector and four pages of reference standards.Complete the first of the two pages as shown in Fig. 17. Thisform, which is self-explanatory, requests general informationabout the ship.6.2 The

21、second page of the applicable inspection form to becompleted by the inspector is shown in Figs. 4-7. Complete aseparate inspection form for each of the inspection areasdelineated in Figs. 14-16. Instructions for completing the form(shown in Figs. 4-7) are given in Section 7.6.2.1 For the ships topsi

22、de and superstructure, divide theinspection area into six sections. These six inspection areas aredefined by the diagram in Fig. 14. For each complete inspec-tion, complete one form, shown in Fig. 4, for each section.6.2.2 For the ships tanks and voids, divide the inspectionarea into seven sections.

23、 These seven inspection areas aredefined by the diagram in Fig. 15. For each complete tankinspection, complete one form, shown in Fig. 5, for eachsection.6.2.3 For the ships underwater hull and boottop, divide theinspection area into twelve inspection areas. These twelveNOTE 1The specific type of fa

24、ilure is to be defined. The failure maybe fouling, corrosion, and so forth. Do not combine all failures into oneoverall extent diagram.FIG. 1 Overall Extent of Failure DiagramsFIG. 2 Extent Within Affected Area Diagrams (B Through K)F 1130 99 (2005)2inspection areas are defined by the diagram in Fig

25、. 16. For eachcomplete underwater hull inspection, complete one form,shown in Fig. 6, for each section.6.2.4 For the ships deck and machinery, the inspection areais a code which is used to designate an area of the ships deckor a piece of deck machinery. The purpose of the code is toidentify positive

26、ly the area being inspected so that a history ofinspection data can be gathered. For sections of the ship otherthan decks and deck machinery (that is, underwater hull,boottop, topside, superstructure, tanks, and voids), it is possibleto develop a general diagram of the ship section. Divide theship s

27、ection into logical inspection areas, and provide inspec-tion area codes for these inspection areas. Decks and deckmachinery vary so greatly between ship types that the devel-opment of a general diagram with logical inspection areas andinspection area codes is not feasible. It should be the respon-s

28、ibility of the organization that authorizes the inspections todevelop the ship diagram, logical inspection areas, and inspec-tion area codes and to make certain that this same codingsystem is used during all subsequent inspections.7. Form Instructions7.1 Inspection AreaThe topside/superstructure is

29、dividedinto six inspection areas (see Fig. 14). Enter the code for thearea being inspected. (For example, enter “SA” for the super-structure aft; “SM” for the superstructure midships;“ SF” forthe superstructure forward; “SO” for othersuperstructure, thatis, bulwarks, vents, sideport openings, and so

30、 forth; “HS” forhull starboard; and “HP” for hull port.)7.1.1 A tank is segmented into seven inspection areas (seeFig. 15. Enter the code for the area being inspected. (Forexample, enter “B” for the bottom of tank inspection, “A” forthe aft bulkhead, and so forth.) A complete list of tanksegments an

31、d their codes is shown in Fig. 15.7.1.2 The underwater hull and boottop are segmented intotwelve distinct inspection areas. Enter the code for the areabeing inspected. (For example, enter “P1” for the port bowinspection, “S1” for the starboard bow inspection, and soforth.) A complete list of hull se

32、gments and their codes isshown in Fig. 16.7.1.3 Decks and deck machinery vary so greatly betweenship types that the development of a general diagram withlogical inspection areas and inspection area codes is notfeasible. It should be the responsibility of the organization thatauthorizes the inspectio

33、ns to develop the ship diagram, logicalinspection areas, and inspection area codes and to make certainthat this same coding system is used during all subsequentinspections.7.2 DateEnter the date of the inspection. If the inspectionrequires more than one day, enter the date the inspection iscompleted

34、.7.3 Ship NameEnter the ships name (for example, LPH-14, USS Trenton).7.4 Hull NumberEnter the builders hull number of theship (for example, Nassco No. 1182).7.5 Inspectors NameThe inspector should print hisname.7.6 Tank NumberEnter tank designation.7.7 Tank TypeEnter type (for example, fuel oil, ba

35、llast,and so forth).7.8 Required PhotographsFor each inspection area, aphotograph of the entire area is required. If the area is too largeto capture in one photograph, the area should be divided intoequal-sized segments and each segment should be photo-graphed. An individual close-up photograph of e

36、ach damagedsection in the inspection area is required. Each photographshould be marked with the area number, ship name, and date.Also a size scale should be captured in each photograph. Thissize scale is a reference standard that would be used todetermine the approximate size of the photographed shi

37、p area.(For example, a 12-in. (304.8-mm) rule might be an appropri-ate size scale for a relatively small ship area.)7.9 Inspection Area ObscuredIf the inspection area iscompletely obscured and cannot be inspected, circle the“ Y.”This condition of being completely obscured will probablyoccur most fre

38、quently in the bottom inspection area (“B”)FIG. 3 Extent Within Affected Area Diagrams (L Through V)F 1130 99 (2005)3where dirt and other contaminants have settled. If the inspec-tion area is not completely obscured, circle the “N.”CORROSION8. Classification of Corrosion8.1 The inspector should dist

39、inguish between six types ofcorrosion and report each type separately. The six types ofcorrosion are as follows:8.1.1 General CorrosionGeneral corrosion, for the pur-poses of this inspection form, is all corrosion that is notcovered in the mechanical damage, pitting corrosion, pinpointcorrosion, gal

40、vanic corrosion/coating undercutting, or ruststaining in 8.1.2, 8.1.3, 8.1.4, 8.1.5, and 8.1.6. Patches ofcommon, ordinary rusting are classified as general corrosion.FIG. 4 Topside and SuperstructureF 1130 99 (2005)4FIG. 5 Tanks and VoidsF 1130 99 (2005)58.1.2 Mechanical DamageMechanical damage cor

41、rosionis corrosion that occurred because the paint was removed fromthe hull by some type of scraping or impact against the hull.With the paint removed and the steel hull exposed to sea water,corrosion occurred. Photographic examples of corrosioncaused by various forms of mechanical damage (that is,s

42、craping/impact, anchor chains/ropes, and internal welds/burning) are shown in Fig. 8.FIG. 6 Underwater Hull and BoottopF 1130 99 (2005)68.1.3 Pitting CorrosionPitting corrosion is a more ad-vanced form of localized corrosion. Pitting corrosion is char-acterized by visible indentations or pits that h

43、ave penetratedinto the steel hull surface. These pits distinguish betweenpitting corrosion and general corrosion, the latter being char-acterized by a layer of rust that does not penetrate locally intothe surface but is more uniform in extent. A photographicexample of pitting corrosion is shown in F

44、ig. 12.FIG. 7 Decks and Deck Machinery)FIG. 8 General CorrosionF 1130 99 (2005)78.1.4 Pin-Point CorrosionPin-point corrosion is charac-terized by a pattern of small spots (pin-points) of rust. Aphotographic example of pin-point corrosion is shown in Fig.12.8.1.5 Galvanic Corrosion/Coating Undercutti

45、ngGalvaniccorrosion is characterized by the rapid deterioration of onemetal at or near a bimetallic joint. Galvanic corrosion some-times results in coating removal or undercutting. A photo-graphic example is shown in Fig. 12.8.1.6 Rust StainingRust staining occurs on top of thecoating with no penetr

46、ation to the substrate. A photographicexample is shown in Fig. 12.FOULING9. Examination of Fouling (Underwater Hull andBoottop)9.1 Slime:9.1.1 Overall Extent of FailureUsing the overall extent offailure diagrams (diagrams and instruction for use in 4.1), enterthe number of the diagram that most clos

47、ely approximates theoverall extent of slime fouling. If there is no slime fouling inthis inspection area, enter the number “0” (zero), and leave thenext box (extent within affected area) blank.9.1.2 Extent Within Affected AreaUsing the extent withinaffected area diagrams (diagrams and instructions f

48、or use in4.1), enter the letter of the diagram that most closely approxi-mates the extent of slime fouling within the affected area. If theoverall extent of failure box as specified in 9.1.1 is marked witha “0” (zero), leave the extent within affected area box blank.FIG. 9 Overall Extent of FailureG

49、eneral CorrosionFIG. 10 Extent Within Affected AreaGeneral CorrosionFIG. 11 Forms of Mechanical DamageFIG. 12 Types of CorrosionF 1130 99 (2005)89.2 Grass:9.2.1 Overall Extent of FailureUsing the overall extent offailure diagrams (diagrams and instructions for use in 4.1),enter the number of the diagram that most closely approxi-mates the overall extent of grass fouling. If there is no grassfouling in this inspection area, enter the number “0” (zero), andleave the next box (extent within affected area) blank.9.2.2 Extent Within Affecte

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1