ASTM F384-2006e1 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices《金属斜角整形外科骨折固定设备的标准规范和试验方法》.pdf

上传人:arrownail386 文档编号:536539 上传时间:2018-12-06 格式:PDF 页数:11 大小:168.38KB
下载 相关 举报
ASTM F384-2006e1 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices《金属斜角整形外科骨折固定设备的标准规范和试验方法》.pdf_第1页
第1页 / 共11页
ASTM F384-2006e1 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices《金属斜角整形外科骨折固定设备的标准规范和试验方法》.pdf_第2页
第2页 / 共11页
ASTM F384-2006e1 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices《金属斜角整形外科骨折固定设备的标准规范和试验方法》.pdf_第3页
第3页 / 共11页
ASTM F384-2006e1 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices《金属斜角整形外科骨折固定设备的标准规范和试验方法》.pdf_第4页
第4页 / 共11页
ASTM F384-2006e1 Standard Specifications and Test Methods for Metallic Angled Orthopedic Fracture Fixation Devices《金属斜角整形外科骨折固定设备的标准规范和试验方法》.pdf_第5页
第5页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F 384 061Standard Specifications and Test Methods forMetallic Angled Orthopedic Fracture Fixation Devices1This standard is issued under the fixed designation F 384; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the y

2、ear of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEUnits information was editorially corrected in August 2009.1. Scope1.1 These specifications and test methods provide a

3、 com-prehensive reference for angled devices used in the surgicalinternal fixation of the skeletal system. This standard estab-lishes consistent methods to classify and define the geometricand performance characteristics of angled devices. This stan-dard also presents a catalog of standard specifica

4、tions thatspecify material, labeling, and handling requirements, andstandard test methods for measuring performance relatedmechanical characteristics determined to be important to the invivo performance of angled devices.1.2 It is not the intention of this standard to define levels ofperformance of

5、case-specific clinical performance for angleddevices, as insufficient knowledge is available to predict theconsequences of their use in individual patients for specificactivities of daily living. Futhermore, this standard does notdescribe or specify specific designs for angled devices used inthe sur

6、gical internal fixation of the skeletal system.1.3 This standard may not be appropriate for all types ofangled devices. The user is cautioned to consider the appro-priateness of this standard in view of a particular angled deviceand its potential application.NOTE 1This standard is not intended to ad

7、dress intramedullary hipscrew nails or other angled devices without a sideplate.1.4 This standard includes the following test methods usedin determining the following angled device mechanical perfor-mance characteristics:1.4.1 Standard test method for single cycle compressionbend testing of metallic

8、 angled orthopedic fracture fixationdevices (see Annex A1).1.4.2 Standard test method for determining the bendingfatigue properties of metallic angled orthopedic fracture fixa-tion devices (see Annex A2).1.5 The values stated in SI units are to be regarded asstandard. No other units of measurement a

9、re included in thisstandard.NOTE 2There is currently no ISO standard that is either similar toequivalent to this standard.2. Referenced Documents2.1 ASTM Standards:2E4 Practices for Force Verification of Testing MachinesE8 Test Methods for Tension Testing of Metallic MaterialsE 122 Practice for Calc

10、ulating Sample Size to Estimate,With Specified Precision, the Average for a Characteristicof a Lot or ProcessF67 Specification for Unalloyed Titanium, for SurgicalImplant Applications (UNS R50250, UNS R50400, UNSR50550, UNS R50700)F75 Specification for Cobalt-28 Chromium-6 MolybdenumAlloy Castings a

11、nd Casting Alloy for Surgical Implants(UNS R30075)F90 Specification for Wrought Cobalt-20Chromium-15Tungsten-10Nickel Alloy for Surgical Implant Applica-tions (UNS R30605)F 136 Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for SurgicalImplant Applications

12、(UNS R56401)F 138 Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for SurgicalImplants (UNS S31673)F 139 Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Sheet and Strip for Surgi-cal Implants (UNS S31673)F 382 Specification and Tes

13、t Method for Metallic BonePlatesF 543 Specification and Test Methods for Metallic MedicalBone ScrewsF 565 Practice for Care and Handling of Orthopedic Im-plants and InstrumentsF 620 Specification for Alpha Plus Beta Titanium AlloyForgings for Surgical ImplantsF 621 Specification for Stainless Steel

14、Forgings for SurgicalImplants1These specifications and test methods are under the jurisdiction of ASTMCommittee F04 on Medical and Surgical Materials and Devices and are the directresponsibility of Subcommittee F04.21 on Osteosynthesis.Current edition approved Jan. 15, 2006. Published February 2006.

15、 Originallyapproved in 1973. Last previous edition approved in 2000 as F 384 00.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page

16、onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.F 983 Practice for Permanent Marking of Orthopaedic Im-plant ComponentsF 1295 Specification for Wrought Titanium-6Aluminum-7Niobium Alloy for Surgical Implant Applica

17、tions (UNSR56700)F 1314 Specification for Wrought Nitrogen Strengthened 22Chromium 13 Nickel 5 Manganese 2.5 MolybdenumStainless Steel Alloy Bar and Wire for Surgical Implants(UNS S20910)F 1472 Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNSR56400)

18、F 1713 Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications(UNS R58130)2.2 ISO Standards:3ISO 5835 Implants for SurgeryMetal Bone Screws withHexagonal Drive ConnectionSpherical Under Surfaceof Head, Asymmetrical ThreadISO 5836 Implants for SurgeryMetal Bon

19、e PlatesHolesCorresponding to Screws with Asymmetrical Thread andSpherical Under SurfaceISO 9268 Implants for SurgeryMetal Bone Screws withConical Under-Surface of HeadDimensionsISO 9269 Implants for SurgeryMetal Bone PlatesHolesand Slots Corresponding to Screws with Conical Under-SurfaceISO 14602 N

20、on-active Surgical ImplantsImplants forOsteosynthesisParticular Requirements3. Terminology3.1 Definitions: Geometric3.1.1 angle, ndefined at either the barrel/sideplate orblade/sideplate junction (see Fig. 1 and Fig. 2).3.1.2 angled device, na class of orthopedic devices for thefixation of fractures

21、 in the methaphyseal areas of long bonesthat has a component aligned at an angle to the bones longaxis.3.1.3 barrel, nthe portion of an angled device whichcaptures the lag screw (see Fig. 1).3.1.4 barrel length, LBR, n the distance from the free endof the barrel to the interior vertex of the barrel/

22、sideplatejunction (see Fig. 1).3.1.5 blade, nthe portion of an angled device whichtransmits the off axis loading of the anatomical loadingcondition to the sideplate portion of the angled device (see Fig.2).3.1.6 blade length, LBD, nthe distance from the free endof the blade to the interior vertex of

23、 the blade/sideplate junction(see Fig. 2).3.1.7 lag screw, nthat component of a compression hipscrew angled device which is threaded into the metaphyses andtransmits the off axis load to the sideplate through the barrel(see Fig. 1).3.1.8 lag screw length, nthe straight line distance mea-sured betwee

24、n the proximal and distal ends of the lag screw(see Fig. 1).3.1.9 sideplate, nthat portion of the angle device gener-ally aligned with the bones long axis which attaches to thebone via bone screws (see Fig. 1 and Fig. 2).3.1.10 sideplate length, L, nthe distance from the free endof the sideplate to

25、the interior vertex of the barrel/sideplatejunction, shown in Fig. 1 and Fig. 2.3.1.11 sideplate thickness, b, nthe thickness of the side-plate as shown in Fig. 1 and Fig. 2.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.FIG. 1 Diagram Illu

26、strating Compression Hip Screw Angled DevicesFIG. 2 Diagram Illustrating Blade Plate Angled DevicesF38406123.1.12 sideplate width, w, nthe width of the sideplate asshown in Fig. 1 and Fig. 2.3.1.13 thread diameter, nthe maximum outside diameterof the lag screw (see Fig. 1).3.1.14 thread length, nthe

27、 straight line distance measuredbetween the tip and thread runout positions of the screw (seeFig. 1).3.2 Definitions: Mechanical/Structure:3.2.1 bending strength, n of the sideplate, the bendingmoment necessary to produce a 0.2 % offset displacement inthe sideplate when tested as described in Annex

28、A1 ofSpecification and Test Methods F 382.3.2.2 bending structural stiffness, Ele, nof the sideplate,the sideplates normalized effective bending stiffness that takesinto consideration the effects of the test setups configurationwhen tested according to the method described inAnnexA1 ofSpecification

29、and Test Methods F 382.3.2.3 compression bending stiffness, (K), nof a device, themaximum slope of the linear elastic portion of the load versusdisplacement curve, when tested as described in Annex A1.3.2.4 compression bending strength, nof a device, thebending moment necessary to produce a 0.2 % of

30、fset displace-ment in the device when tested as described in Annex A1.3.2.5 fatigue strength at N cycles, nan estimate of thecyclic forcing parameter, for example, load, moment, torque,stress, etc., at a given load ratio, for which 50 % of thespecimens within a given sample population would be ex-pe

31、cted to survive N loading cycles.3.2.6 fatigue life, N, nthe number of loading cycles of aspecified character that a given specimen sustains beforefailure of a specified nature occurs.4. Classification4.1 Angled devices used in general orthopedic surgeryrepresent a subset of bone plates. Angled devi

32、ces are mainlyused in the treatment of fractures in the metaphyseal areas oflong bones. Angled devices can be categorized into generaltypes according to the following classifications:4.1.1 Blade Platean angled device where the componentof the device that is oriented at an angle from the long axis of

33、the bone is fixed relative to the sideplate; this component oftenis shaped like a blade to achieve fixation into the metaphyses(see Fig. 2), and4.1.2 Compression Hip Screwan angled device where thecomponent of the device which is oriented at a angle from thelong axis of the bone is free to translate

34、 relative to the sideplatethrough a barrel; this component often achieves fixation intothe metaphyses through the use of deep threads (see Fig. 1).5. Marking, Packaging, Labeling and Handling5.1 Dimensions of angled devices should be designated bythe standard definitions given in 3.1.5.2 Angled devi

35、ces shall be marked using a method speci-fied in accordance with either Practice F 983 or ISO 14602.5.3 Markings on angled devices shall identify the manufac-ture or distributor and shall be made away from the most highlystressed areas, where possible.5.4 Packaging shall be adequate to protect the a

36、ngled deviceduring shipment.5.5 Package labeling for angled devices shall include whenpossible the following information;5.5.1 Manufacturer and product name,5.5.2 Catalog number,5.5.3 Lot or serial number,5.5.4 Material and, where applicable, its associated ASTMspecification designation number,5.5.5

37、 Device angle, between the sideplate and the barrel(blade)5.5.6 Barrel (blade) length,5.5.7 Number of screw holes,5.5.8 Sideplate width,5.5.9 Sideplate length,5.5.10 Sideplate thickness,5.5.11 Screw hole size, and5.5.12 ASTM specification designation number.5.6 Bone plates should be cared for and ha

38、ndled in accor-dance with Practice F 565, as appropriate.6. Materials6.1 All angled devices made of materials which can bepurchased to an ASTM specification shall meet those require-ments given in the ASTM specification. Such specificationinclude: F67, F75, F90, F 139, F 543, F 1295, F 1314,F 1472,

39、and F 1713.6.2 Angled devices of forged Specification F 136 shall meetthe requirements of Specification F 620.6.3 Angled devices of forged Specification F 138 shall meetthe requirements of Specification F 621.7. General Requirements and PerformanceConsiderations7.1 Geometric ConsiderationsFor angled

40、 devices that areintended to be used with bone screws that conform to ISO 5835or ISO 9268, the screw holes shall correspond to the dimen-sions and tolerances of ISO 5836 or ISO 9269, respectively.7.2 Bending PropertiesBending properties are a criticalcharacteristic of angled devices for orthopedic a

41、pplicationssince the plate provides the primary means of stabilizing thebone fragments. Additionally, the bending stiffness of theangled device may directly affect the rate and ability ofhealing.7.2.1 The relevant compression bending properties (com-pression bending stiffness and compression bending

42、 strength)of the device shall be determined using Annex A1.7.2.2 The relevant bending properties (bending stiffness,bending structural stiffness and bending strength) of thesideplate shall be determined using the Annex A1 of Specifi-cation and Test Methods F 382.7.2.3 Determine the relevant angled d

43、evice bending fatigueproperties according to the methods described in Annex A2.7.2.4 Determine the relevant side plate bending fatigueproperties according to the methods described in Annex A2 ofSpecification and Test Methods F 382.8. Keywords8.1 angled devices; bend testing; blade plate; compression

44、hip screw; fatigue test; orthopedic medical devices; surgicaldevices; surgical implantsF3840613ANNEXES(Mandatory Information)A1. STANDARD TEST METHOD FOR SINGLE CYCLE COMPRESSION BEND TESTING OF METALLIC ANGLEDORTHOPEDIC FRACTURE FIXATION DEVICESA1.1 ScopeA1.1.1 This test method describes methods fo

45、r single cyclebend testing for determining intrinsic, structural properties ofmetallic angled orthopedic fracture fixation devices. The testmethod measures the angled devices compression bendingstiffness and compression bending strength.A1.1.2 This test method is intended to provide a means tomechan

46、ically characterize different angled device designs. It isnot the intention of this test method to define levels ofperformance for angled devices, as these characteristics aredriven by patient-specific clinical requirements.A1.1.3 This test method is designed to provide flexibility inthe testing con

47、figuration so that a range of clinical failuremodes for the angled fixation devices (for example, sideplate,lag screw, and barrel fractures) can be evaluated.A1.1.4 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.A1.1.5 This sta

48、ndard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.A1.2 Referenced Documents2A

49、1.2.1 ASTM Standards:E 4 Practices for Load Verification of Testing MachinesE 122 Practice for Choice of Sample Size to Estimate theAverage Quality of a Lot or ProcessA1.3 TerminologyA1.3.1 Definitions:A1.3.1.1 0.2 % offset displacement, q, npermanent defor-mation (mm) equal to 0.2 % of the lever arm length (see pointBinFig. A1.1).A1.3.1.2 compression bending stiffness, K, nof an angleddevice, the maximum slope (N/m) of the linear elastic portionof the load versus displacement curve, when tested as de-scribed in A1.8. (See the sl

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1