1、Designation: F820 16 An American National StandardStandard Test Method forMeasuring Air Performance Characteristics of CentralVacuum Cleaning Systems1This standard is issued under the fixed designation F820; the number immediately following the designation indicates the year of originaladoption or,
2、in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscriptepsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers procedures for determining airperformance characteristics
3、 of household central vacuumcleaning systems, which use a flexible cleaning hose assemblyand incorporates a series universal motor(s). This test methoddoes not apply to the carpet cleaning mode of operation wheredirt or debris is involved.1.2 These tests and calculations include determination ofsuct
4、ion, airflow, air power, maximum air power, and inputpower under standard operating conditions (see Note 1).NOTE 1For more information on air performance characteristics, seeRefs (1-6).21.3 The values stated in inch-pound units are to be regardedas the standard. The values given in parentheses are p
5、rovidedfor information only.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations
6、prior to use. A specific precau-tionary statement is given in Note 4.2. Referenced Documents2.1 ASTM Standards:3E1 Specification for ASTM Liquid-in-Glass ThermometersE177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE691 Practice for Conducting an Interlaboratory Study toDeter
7、mine the Precision of a Test MethodE2251 Specification for Liquid-in-Glass ASTM Thermom-eters with Low-Hazard Precision LiquidsF431 Specification for Air Performance Measurement Ple-num Chamber for Vacuum Cleaners2.2 AMCA Standard:421085 Laboratory Methods of Testing Fans for Rating2.3 IEC Standard:
8、5IEC 60312 Ed 3.2 Vacuum Cleaners for Household UseMethods of Measuring the Performance3. Terminology3.1 Definitions:3.1.1 air power, AP, W, nin a vacuum cleaner, the net timerate of work performed by an air stream while expendingenergy to produce an airflow by a vacuum cleaner underspecified air re
9、sistance conditions.3.1.2 automatic bleed valve, nany device a part of avacuum cleaners design, which automatically introduces anintentional leak within the vacuum cleaners system whenmanufacturer specified conditions are met.3.1.3 corrected airflow, Q, cfm, nin a vacuum cleaner, thevolume of air mo
10、vement per unit of time under standardatmospheric conditions.3.1.4 input power, W, nthe rate at which electrical energyis absorbed by a vacuum cleaner.3.1.5 model, nthe designation of a group of vacuumcleaners having the same mechanical and electrical construc-tion with only cosmetic or nonfunctiona
11、l differences.3.1.6 population, nthe total of all units of a particularmodel vacuum cleaner being tested.3.1.7 repeatability limit (r), nthe value below which theabsolute difference between two individual test results obtainedunder repeatability conditions may be expected to occur with aprobability
12、of approximately 0.95 (95 %).3.1.8 reproducibility limit (R), nthe value below which theabsolute difference between two test results obtained under1This test method is under the jurisdiction of ASTM Committee F11 on VacuumCleaners and is the direct responsibility of Subcommittee F11.22 on Air Perfor
13、-mance.Current edition approved Oct. 1, 2016. Published November 2016. Originallyapproved in 1988. Last previous edition approved in 2011 as F820 11. DOI:10.1520/F0820-16.2The boldface numbers in parentheses refer to the list of references at the end ofthis standard.3For referenced ASTM standards, v
14、isit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4Available from Air Movement and Control Association, Inc., 30 West Univer-sity Dr., Arlington
15、 Heights, IL 600041893.5Available from the IEC Web store, webstore.iec.ch, or American NationalStandards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1reproducibility c
16、onditions may be expected to occur with aprobability of approximately 0.95 (95 %).3.1.9 repeatability standard deviation (Sr), nthe standarddeviation of test results obtained under repeatability condi-tions.3.1.10 reproducibility standard deviation (SR), nthe stan-dard deviation of test results obta
17、ined under reproducibilityconditions.3.1.11 sample, na group of vacuum cleaners taken from alarge collection of vacuum cleaners of one particular model,which serves to provide information that may be used as a basisfor making a decision concerning the larger collection.3.1.12 standard air density, s
18、td, lb/ft3,natmospheric airdensity of 0.075 lb/ft3(1.2014 kg/m3).3.1.12.1 DiscussionThis value of air density correspondsto atmospheric air at a temperature of 68 F (20 C), 14.696 psi(101.325 kPa), and approximately 30 % relative humidity.3.1.13 suction, inch of water, nin a vacuum cleaner, theabsol
19、ute difference between ambient and subatmospheric pres-sure.3.1.14 test run, nthe definitive procedure that producesthe singular result of calculated maximum air power.3.1.15 test station pressure, Bt, inch of mercury, nfor avacuum cleaner, the absolute barometric pressure at the testlocation (eleva
20、tion) and test time.3.1.15.1 DiscussionIt is not the equivalent mean sea levelvalue of barometric pressure typically reported by the airportand weather bureaus. It is sometimes referred to as theuncorrected barometric pressure (that is, not corrected to themean sea level equivalent value). Refer to
21、5.4 for additionalinformation.3.1.16 unit, na single vacuum cleaner of the model beingtested.4. Significance and Use4.1 The test results allow the comparison of the maximumair power available when no dirt has been introduced into thevacuum cleaning system, that is, a completely clean filter or anemp
22、ty, clean dirt container.5. Apparatus5.1 Plenum ChamberSee Specification F431 or IEC60312, Section 5.2.8.2 (Figure 13c).5.2 Water Manometers, or equivalent instruments. One tomeasure from 0 to 6 in. (152.4 mm) in increments of 0.01 in.(0.254 mm), and one with increments of 0.1 in. (2.54 mm) foruse i
23、n making measurements above 6 in. (152.4 mm). A singleinstrument having a resolution of 0.01 in. (0.254 mm) over theentire required range may be used instead of two separateinstruments.5.3 Power analyzer, to provide measurements accurate towithin 61%.5.4 Barometer, with an accuracy of 60.05 in. (1.2
24、7 mm) ofmercury, capable of measuring and displaying absolute baro-metric pressure, scale divisions 0.02 in. (0.51 mm) or finer.5.4.1 Mercury barometers, in general, measure and displaythe absolute barometric pressure. Some corrections may beneeded for temperature and gravity. Consult the ownersmanu
25、al.5.4.2 When purchasing an aneroid or electronic barometer,be sure to purchase one which displays the absolute barometricpressure, not the mean sea level equivalent barometric pressurevalue. These types of barometers generally have temperaturecompensation built into them and do not need to be corre
26、ctedfor gravity.5.5 Sharp-Edge Orifice PlatesSee Specification F431.5.6 ThermometerSolid-stem, ambient thermometer hav-ing a range from 18 to 89F (or 8 to +32C) with graduationsin 0.2F (0.1C), conforming to the requirements for thermom-eter 63F (17C) as prescribed in Specification E1.Asanalternative
27、, thermometers S63F or S63C, as prescribed inSpecification E2251, may be used. In addition, thermometricdevices such as resistance temperature detectors (RTDs),thermistors, or thermocouples of equal or better accuracy maybe used.5.7 PsychrometerThermometers graduated in 0.2 F (0.1C).5.8 Voltage-Regu
28、lator System, to control the input voltageto the vacuum cleaner. The regulator system shall be capable ofmaintaining the vacuum cleaners rated voltage 61 % andrated frequency 61 Hz having a wave form that is essentiallysinusoidal with 3 % maximum harmonic distortion for theduration of the test.5.9 O
29、rifice Adapter TubeSee Fig. 1.6. Sampling6.1 A minimum of three units of the same model vacuumcleaner selected at random in accordance with good statisticalpractice, shall constitute the population sample.6.1.1 To determine the best estimate of maximum air powerfor the population of the vacuum clean
30、er model being tested,the arithmetic mean of the maximum air power of the samplefrom the population shall be established by testing it to a 90 %confidence level within 65%.6.1.2 Annex A2 provides a procedural example for deter-mining the 90 % confidence level and when the sample sizeshall be increas
31、ed.NOTE 2See Annex A2 for method of determining 90 % confidencelevel.7. Test Vacuum Cleaners7.1 New Test Vacuum CleanerRun the vacuum cleaner inat rated voltage 61% and rated frequency with filters in placefor 1 h with a wide-open inlet (without hose).7.2 Used Test Vacuum CleanersRecondition a used
32、testvacuum cleaner; prior to the initial test run as follows:7.2.1 Thoroughly remove excess dirt from the vacuumcleaner. Without using tools for disassembly, clean the entireouter surface, brushes, nozzle chamber, ductwork, inside of thechamber surrounding the primary filter, and inside hose andwand
33、s.F820 1627.2.2 For vacuum cleaners using disposable filters as theprimary filters, use a new disposable primary filter from themanufacturer for each test. Install it as recommended by thevacuum cleaner manufacturer.7.2.3 For vacuum cleaners using non-disposable dirtreceptacles, empty in accordance
34、with the manufacturersinstructions and clean the receptacle until its weight is within0.07 oz (2 g) of its original weight and install it as recom-mended by the vacuum cleaner manufacturer.7.2.4 For vacuum cleaners using non-disposable dirtreceptacles, empty in accordance with the manufacturersinstr
35、uctions and clean the receptacle until its weight is within0.07 oz (2 g) of its original weight and install it as recom-mended by the vacuum cleaner manufacturer.NOTE 3It is preferable to conduct this test method on new test vacuumcleaners prior to any otherASTM test methods to avoid contamination t
36、hatcould cause performance variations.7.3 Test Vacuum Cleaner SettingsIf various settings areprovided, set the motor speed setting or suction regulator usingthe manufacturers specifications as provided in the instructionmanual for normal operation. If a different setting is used,make a note of the d
37、eviation in the test report.8. Procedure8.1 Preparation for Test:8.1.1 Prepare the test unit in accordance with Section 7.Set-up the test system as shown in Fig. 2. On the intake side,use an adapter terminating with the wall inlet valve. This wallinlet is to be the one specified for installation wit
38、h the powerunit being tested. All joints should be made in accordance withthe manufacturers specifications and be free of leaks. Insertinto the wall valve a flexible cleaning hose as provided with thesystem. The hose assembly should be that which is offerednormally with the particular unit being tes
39、ted. For thosesystems, which provide for an external exhaust, connect 2 ft(0.6 m) of exhaust comprised of tubing and exhaust muffler, ifa muffler is provided as part of the system.8.1.2 Set the manometers to zero and check all instrumentsfor proper operation.8.1.3 Record the test station pressure an
40、d the dry-bulb andwet-bulb temperature readings within 6 ft of the test area. Readthe barometric pressure to the nearest 0.02 in. (0.51 mm) ofmercury, and the dry-bulb and wet-bulb temperatures to thenearest 0.2 F (or 0.1 C).8.1.3.1 The test area shall be free of major fluctuatingtemperature conditi
41、ons due to air conditioners or air drafts thatwould be indicated by a thermometer at the immediate testarea.8.1.4 Connect the manometer or equivalent instrument tothe plenum chamber.8.1.5 Connect a power analyzer.8.2 Test Procedure:8.2.1 Connect the hose assembly to the plenum chamberhose adapter an
42、d seal only this connection (see Fig. 3).FIG. 1 Orifice Adapter TubeF820 1638.2.1.1 The end of the hose assembly should be insertedinside the hose connector adapter and be perpendicular to theplenum chamber.8.2.1.2 The end of the hose assembly shall not project intothe plenum chamber.8.2.1.3 Any aut
43、omatic bleed valve, which affects the airperformance of the vacuum cleaner, shall not be defeated.8.2.2 The hose should be supported and kept straight andhorizontal over its entire length.Allowance should be made forthe foreshortening of the hose assembly under the vacuum.Maintain the power unit and
44、 dirt canister in their normaloperating orientation.8.2.3 Operate the vacuum cleaner with no orifice plateinserted in the plenum chamber inlet at nameplate rated voltage61 % and frequency 61 Hz prior to the start of the test run toallow the unit to reach its normal operating temperature. Forvacuum c
45、leaners with dual nameplate voltage ratings, conducttesting at the highest voltage.Allow the unit to reach its normaloperating temperature before each test run.8.2.4 The vacuum cleaner is to be operated at its nameplaterated voltage 61 % and frequency 61 Hz throughout the test.For vacuum cleaners wi
46、th dual nameplate voltage ratings,conduct the test at the highest voltage.8.2.4.1 Allow the vacuum cleaner to operate at the openorifice for 1 to 2 min between test runs.8.2.5 While operating the vacuum cleaner in accordancewith 8.2.4, insert orifice plates sequentially into the orificeplate holder
47、of the plenum chamber starting with the largestsize orifice and following it with the next smaller orifice plate.Use the following orifice plates: 2.0, 1.5, 1.25, 1.0, 0.875, 0.75,0.625, 0.5, 0.375, 0.25, 0.0 in. (50.8, 38.1, 31.7, 25.4, 22.2,19.0, 15.8, 12.7, 9.5, 6.3 mm). The following optional or
48、ificeplates also may be used: 2.5, 2.25, 1.75, 1.375, 1.125 in. (63.5,57.2, 44.5, 34.9, 28.6 mm).8.2.6 For each orifice plate, record the suction, h, and inputpower, P, in that order. All readings should be taken within 10s of the orifice insertion. For orifices less than 0.750 in. allowthe vacuum c
49、leaner to operate at the open orifice for 1 to 2 minbefore inserting the next orifice.8.2.6.1 Read the suction to the nearest graduation of theinstrument. Readings should be taken as soon as the manom-eter reaches a true peak. When using a fluid type manometer,the liquid level may peak, drop, and peak again. The secondpeak is the true peak reading. A person conducting the test forthe first time shall observe at least one run before recordingNOTE 1Hose is to be supported in a straight line.FIG. 2 Vacuum Cleaning System Test Set