ASTM F2245-2016c Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机设计和性能的标准规格》.pdf

上传人:jobexamine331 文档编号:538192 上传时间:2018-12-07 格式:PDF 页数:34 大小:861.14KB
下载 相关 举报
ASTM F2245-2016c Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机设计和性能的标准规格》.pdf_第1页
第1页 / 共34页
ASTM F2245-2016c Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机设计和性能的标准规格》.pdf_第2页
第2页 / 共34页
ASTM F2245-2016c Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机设计和性能的标准规格》.pdf_第3页
第3页 / 共34页
ASTM F2245-2016c Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机设计和性能的标准规格》.pdf_第4页
第4页 / 共34页
ASTM F2245-2016c Standard Specification for Design and Performance of a Light Sport Airplane《轻型运动飞机设计和性能的标准规格》.pdf_第5页
第5页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F2245 16cStandard Specification forDesign and Performance of a Light Sport Airplane1This standard is issued under the fixed designation F2245; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.

2、A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers airworthiness requirements forthe design of powered fixed wing light sport aircraft, an“airplane.”1.2 This

3、specification is applicable to the design of a lightsport aircraft/airplane as defined by regulations and limited toVFR flight.1.3 UnitsThe values given in this standard are in SI unitsand are to be regarded as standard. The values given inparentheses are mathematical conversions to inch-pound (orot

4、her) units that are provided for information only and are notconsidered standard. The values stated in each system may notbe exact equivalents. Where it may not be clear, someequations provide the units of the result directly following theequation.1.4 This standard does not purport to address all of

5、 thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory requirements prior to use.2. Referenced Documents2.1 ASTM Standards:2F2316 Specification for

6、 Airframe Emergency ParachutesF2339 Practice for Design and Manufacture of Reciprocat-ing Spark Ignition Engines for Light Sport AircraftF2483 Practice for Maintenance and the Development ofMaintenance Manuals for Light Sport AircraftF2506 Specification for Design and Testing of Light SportAircraft

7、PropellersF2538 Practice for Design and Manufacture of Reciprocat-ing Compression Ignition Engines for Light SportAircraftF2564 Specification for Design and Performance of a LightSport GliderF2746 Specification for Pilots Operating Handbook (POH)for Light Sport AirplaneF2840 Practice for Design and

8、Manufacture of ElectricPropulsion Units for Light Sport Aircraft2.2 Federal Aviation Regulations:314 CFR Part 33 Airworthiness Standards: Aircraft Engines14 CFR Part 35 Airworthiness Standards: Propellers2.3 EASA Requirements:4CS-22 Sailplanes and Powered SailplanesCS-E EnginesCS-P Propellers2.4 Oth

9、er Standards:GAMA Specification No. 1 Specification for Pilots Operat-ing Handbook53. Terminology3.1 Definitions:3.1.1 electric propulsion unit, EPUany electric motor andall associated devices used to provide thrust for an electricaircraft.3.1.2 energy storage device, ESDused to store energy aspart

10、of a Electric Propulsion Unit (EPU). Typical energystorage devices include but are not limited to batteries, fuelcells, or capacitors.3.1.3 flapsany movable high lift device.3.1.4 maximum empty weight, WE(N)largest emptyweight of the airplane, including all operational equipment thatis installed in

11、the airplane: weight of the airframe, powerplant,Energy Storage Device (ESD) as part of an Electric PropulsionUnit (EPU), required equipment, optional and specificequipment, fixed ballast, full engine coolant and oil, hydraulicfluid, and the unusable fuel. Hence, the maximum emptyweight equals maxim

12、um takeoff weight minus minimum usefulload: WE= W WU.3.1.5 minimum useful load, WU(N)where WU= W WE.1This specification is under the jurisdiction of ASTM Committee F37 on LightSport Aircraft and is the direct responsibility of Subcommittee F37.20 on Airplane.Current edition approved Dec. 1, 2016. Pu

13、blished January 2017. Originallyapproved in 2004. Last previous edition approved in 2016 as F2245 16b. DOI:10.1520/F2245-16C.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information,

14、refer to the standards Document Summary page onthe ASTM website.3Available from Federal Aviation Administration (FAA), 800 IndependenceAve., SW, Washington, DC 20591, http:/www.faa.gov or http:/ecfr.gpoaccess.gov.4Available from EASA European Aviation Safety Agency, Postfach 10 12 53,D-50452 Koeln,

15、Germany, http:/easa.europa.eu.5Available from the General Aviation Manufacturers Association, http:/www.gama.aero/.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internation

16、ally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.13.1.6 nighthours between the end of evening civil twil

17、ightand the beginning of morning civil twilight.3.1.6.1 DiscussionCivil twilight ends in the evening whenthe center of the suns disc is 6 below the horizon, and beginsin the morning when the center of the suns disc is 6 below thehorizon.3.1.7 The terms “engine” referring to internal combustionengine

18、s and “motor” referring to electric motors for propulsionare used interchangeably within this standard.3.1.8 The term “engine idle” when in reference to electricpropulsion units shall mean the minimum power or propellerrotational speed condition for the electric motor as definedwithout electronic br

19、aking of the propeller rotational speed.3.2 Abbreviations:3.2.1 ARaspect ratio 5b2S3.2.2 bwing span (m)3.2.3 cchord (m)3.2.4 CAScalibrated air speed (m/s, kts)3.2.5 CLlift coefficient of the airplane3.2.6 CDdrag coefficient of the airplane3.2.7 CGcenter of gravity3.2.8 Cmmoment coefficient (Cmis wit

20、h respect to c/4point, positive nose up)3.2.9 CMOzero lift moment coefficient3.2.10 Cnnormal coefficient3.2.11 gacceleration as a result of gravity = 9.81 m/s23.2.12 IASindicated air speed (m/s, kts)3.2.13 ICAOInternational Civil Aviation Organization3.2.14 LSALight Sport Aircraft3.2.15 MACmean aero

21、dynamic chord (m)3.2.16 nload factor3.2.17 n1airplane positive maneuvering limit load factor3.2.18 n2airplane negative maneuvering limit load factor3.2.19 n3load factor on wheels3.2.20 Ppower, (kW)3.2.21 air density (kg/m3) = 1.225 at sea level standardconditions3.2.22 POHPilot Operating Handbook3.2

22、.23 qdynamic pressure N/m2!512V23.2.24 RCclimb rate (m/s)3.2.25 Swing area (m2)3.2.26 Vairspeed (m/s)3.2.26.1 VAdesign maneuvering speed3.2.26.2 VCdesign cruising speed3.2.26.3 VDdesign diving speed3.2.26.4 VDFdemonstrated flight diving speed3.2.26.5 VFdesign flap speed3.2.26.6 VFEmaximum flap exten

23、ded speed3.2.26.7 VHmaximum speed in level flight with maximumcontinuous power (corrected for sea level standard conditions)3.2.26.8 VNEnever exceed speed3.2.26.9 VOoperating maneuvering speed3.2.26.10 VSstalling speed or minimum steady flightspeed at which the airplane is controllable (flaps retrac

24、ted)3.2.26.11 VS1stalling speed or minimum steady flightspeed at which the aircraft is controllable in a specificconfiguration3.2.26.12 VS0stalling speed or minimum steady flightspeed at which the aircraft is controllable in the landingconfiguration3.2.26.13 VRground gust speed3.2.26.14 VXspeed for

25、best angle of climb3.2.26.15 VYspeed for best rate of climb3.2.27 waverage design surface load (N/m2)3.2.28 Wmaximum takeoff or maximum design weight(N)3.2.29 WEmaximum empty airplane weight (N)3.2.30 WUminimum useful load (N)3.2.31 WZWFmaximum zero wing fuel weight (N)4. Flight4.1 Proof of Complian

26、ce:4.1.1 Each of the following requirements shall be met at themost critical weight and CG configuration. Unless otherwisespecified, the speed range from stall to VDFor the maximumallowable speed for the configuration being investigated shallbe considered.4.1.1.1 VDFmay be less than or equal to VD.4

27、.1.1.2 VNEmust be less than or equal to 0.9VDFand greaterthan or equal to 1.1VC. In addition, VNEmust be greater than orequal to VH.4.1.2 The following tolerances are acceptable during flighttesting:Weight +5 %, 10 %Weight, when critical +5 %, 1 %CG 7 % of total travel4.2 Load Distribution Limits:4.

28、2.1 The minimum useful load, WU, shall be equal to orgreater than the sum of:4.2.1.1 An occupant weight of 845 N (190 lbf) for eachoccupant seat in aircraft, plus4.2.1.2 The weight of consumable substances, such as fuel,as required for a 1-h flight at Vh. Consumption rates must bebased on test resul

29、ts for the specific application.4.2.2 The minimum flying weight shall be determined.4.2.3 Empty CG, most forward, and most rearward CG shallbe determined.4.2.4 Fixed or removable ballast, or both, may be used ifproperly installed and placarded.4.2.5 Multiple ESDs may be used if properly installed an

30、dplacarded.F2245 16c24.3 Propeller Speed and Pitch LimitsPropeller configura-tion shall not allow the engine to exceed safe operating limitsestablished by the engine manufacturer under normal condi-tions.4.3.1 Maximum RPM shall not be exceeded with fullthrottle during takeoff, climb, or flight at 0.

31、9VH, and 110 %maximum continuous RPM shall not be exceeded during aglide at VNEwith throttle closed.4.4 Performance, GeneralAll performance requirementsapply in standard ICAO atmosphere in still air conditions andat sea level. Speeds shall be given in indicated (IAS) andcalibrated (CAS) airspeeds.4.

32、4.1 Stalling SpeedsWing level stalling speeds VSOandVSshall be determined by flight test at a rate of speed decreaseof 0.5 m/s2(m/s per second) (1 kt/s) or less, throttle closed, withmaximum takeoff weight, and most unfavorable CG.4.4.2 TakeoffWith the airplane at maximum takeoffweight, full throttl

33、e, the following shall be measured usingnormal takeoff procedures:NOTE 1The procedure used for normal takeoff, including flapposition, shall be specified within the POH.4.4.2.1 Ground roll distance to takeoff on a runway withminimal grade.4.4.2.2 Distance to clear a 15-m (50-ft) obstacle at a climbs

34、peed of at least 1.3VS1.4.4.3 ClimbAt maximum takeoff weight, flaps in theposition specified for climb within the POH, and full throttle:4.4.3.1 Rate of climb at VYshall exceed 1.6 m/s (315ft/min).4.4.3.2 Climb gradient at VXshall exceed112 .4.4.4 LandingFor landing with throttle closed and flapsext

35、ended, the following shall be determined:4.4.4.1 Landing distance from 15 m (50 ft) above groundwhen speed at 15 m (50 ft) is 1.3VSO.4.4.4.2 Ground roll distance with reasonable braking if soequipped.4.4.5 Balked LandingThe airplane shall demonstrate afull-throttle climb gradient at 1.3 VSOwhich sha

36、ll exceed130within5sofpower application from aborted landing. If theflaps may be promptly and safely retracted without loss ofaltitude and without sudden changes in attitude, they may beretracted.4.4.5.1 Airplanes with EPUBalked landing performanceshall be demonstrated considering minimum remaining

37、avail-able ESD power.4.5 Controllability and Maneuverability:4.5.1 General:4.5.1.1 The airplane shall be safely controllable and maneu-verable during takeoff, climb, level flight (cruise), dive to VDFor the maximum allowable speed for the configuration beinginvestigated, approach, and landing (power

38、 off and on, flapsretracted and extended) through the normal use of primarycontrols.4.5.1.2 Smooth transition between all flight conditions shallbe possible without exceeding pilot force as shown in Table 1.4.5.1.3 Full control shall be maintained when retracting andextending flaps within their norm

39、al operating speed range (VSOto VFE).4.5.1.4 Lateral, directional, and longitudinal control shall bepossible down to VSO.4.5.2 Longitudinal Control:4.5.2.1 With the airplane trimmed as closely as possible forsteady flight at 1.3VS1, it must be possible at any speed between1.1VS1and 1.3VS1to pitch th

40、e nose downward so that a speednot less than 1.3VS1can be reached promptly. This must beshown with the airplane in all possible configurations, withsimultaneous application of full power and nose down pitchcontrol, and with power at idle.4.5.2.2 Longitudinal control forces shall increase with in-cre

41、asing load factor.4.5.2.3 The control force to achieve the positive limitmaneuvering load factor (n1) shall not be less than 70 N in theclean configuration at the aft center of gravity limit. Thecontrol force increase is to be measured in flight from an initialn=1 trimmed flight condition at a minim

42、um airspeed of twotimes the calibrated maximum flaps up stall speed.4.5.2.4 If flight tests are unable to demonstrate a maneuver-ing load factor of n1, then the minimum control force shall beproportional to the maximum demonstrated load factor, n1D,asfollows:fmin$70NSn1D2 1n12 1D4.5.3 Directional an

43、d Lateral Control:4.5.3.1 It must be possible to reverse a steady 30 bankedcoordinated turn through an angle of 60, from both directions:(1) within 5 s from initiation of roll reversal, with the airplanetrimmed as closely as possible to 1.3 VS1, flaps in the takeoffposition, and maximum takeoff powe

44、r; and (2) within 4 s frominitiation of roll reversal, with the airplane trimmed as closelyas possible to 1.3 VSO, flaps fully extended, and engine at idle.4.5.3.2 With and without flaps deployed, rapid entry into, orrecovery from, a maximum cross-controlled slip shall notresult in uncontrollable fl

45、ight characteristics.4.5.3.3 Lateral and directional control forces shall not re-verse with increased deflection.4.5.4 Static Longitudinal Stability:4.5.4.1 The airplane shall demonstrate the ability to trim forsteady flight at speeds appropriate to the climb, cruise, andlanding approach configurati

46、ons; at minimum and maximumweight; and forward and aft CG limits.4.5.4.2 The airplane shall exhibit positive longitudinal sta-bility characteristics at any speed above 1.1 VS1,uptotheTABLE 1 Pilot ForcePilot force as applied to the controlsPitch,N (lbf)Roll,N (lbf)Yaw,N (lbf)For temporary applicatio

47、n (less than 2 min):Stick 200 (45) 100 (22.5) Wheel (applied to rim) 200 (45) 100 (22.5) Rudder pedal 400 (90)For prolonged application: 23 (5.2) 23 (5.2) 110 (24.7)F2245 16c3maximum allowable speed for the configuration beinginvestigated, and at the most critical power setting and CGcombination.4.5

48、.4.3 Stability shall be shown by a tendency for theairplane to return toward trimmed steady flight after: (1)a“push” from trimmed flight that results in a speed increase,followed by a non-abrupt release of the pitch control; and (2)a “pull” from trimmed flight that results in a speed decrease,follow

49、ed by a non-abrupt release of the pitch control.4.5.4.4 The airplane shall demonstrate compliance with thissection while in trimmed steady flight for each flap and powersetting appropriate to the following configurations: (1) climb(flaps set as appropriate and maximum continuous power); (2)cruise (flaps retracted and 75 % maximum continuous power);and (3) approach to landing (flaps fully extended and engine atidle).4.5.4.5 While returning toward trimmed steady flight, theairplane shall: (1)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1