1、Designation: F2418 09aAn American National StandardStandard Specification forPolypropylene (PP) Corrugated Wall Stormwater CollectionChambers1This standard is issued under the fixed designation F2418; the number immediately following the designation indicates the year oforiginal adoption or, in the
2、case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This specification covers requirements, test methods,materials, and marking for polypro
3、pylene (PP), open bottom,buried chambers of corrugated wall construction used forcollection, detention, and retention of stormwater runoff. Ap-plications include commercial, residential, agricultural, andhighway drainage, including installation under parking lots androadways.1.2 Chambers are produce
4、d in arch shapes with dimensionsbased on chamber rise, chamber span, and wall stiffness.Chambers are manufactured with integral feet that provide basesupport. Chambers may include perforations to enhance waterflow. Chambers must meet test requirements for arch stiffness,flattening, and accelerated w
5、eathering.1.3 Analysis and experience have shown that the successfulperformance of this product depends upon the type and depthof bedding and backfill, and care in installation. This specifi-cation includes requirements for the manufacturer to providechamber installation instructions to the purchase
6、r.1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.5 This standard does not purport to address water qualityissues or hydraulic perf
7、ormance requirements associated withits use. It is the responsibility of the user to ensure thatappropriate engineering analysis is performed to evaluate thewater quality issues and hydraulic performance requirementsfor each installation.1.6 The following safety hazards caveat pertains only to thete
8、st method portion, Section 6, of this specification: Thisstandard does not purport to address all of the safety concerns,if any, associated with its use. It is the responsibility of the userof this standard to establish appropriate safety and healthpractices and determine the applicability of regula
9、tory limita-tions prior to use.2. Referenced Documents2.1 ASTM Standards:2D256 Test Methods for Determining the Izod PendulumImpact Resistance of PlasticsD618 Practice for Conditioning Plastics for TestingD638 Test Method for Tensile Properties of PlasticsD790 Test Methods for Flexural Properties of
10、 Unreinforcedand Reinforced Plastics and Electrical Insulating MaterialsD1600 Terminology for Abbreviated Terms Relating toPlasticsD2122 Test Method for Determining Dimensions of Ther-moplastic Pipe and FittingsD2412 Test Method for Determination of External LoadingCharacteristics of Plastic Pipe by
11、 Parallel-Plate LoadingD2990 Test Methods for Tensile, Compressive, and Flex-ural Creep and Creep-Rupture of PlasticsD4101 Specification for Polypropylene Injection and Extru-sion MaterialsD4329 Practice for Fluorescent UV Exposure of PlasticsD6992 Test Method for Accelerated Tensile Creep andCreep-
12、Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped IsothermalMethodF412 Terminology Relating to Plastic Piping Systems2.2 AASHTO Specification:1This specification is under the jurisdiction of ASTM Committee F17 on PlasticPiping Systems and is the direct respo
13、nsibility of Subcommittee F17.65 on LandDrainage.Current edition approved Dec. 1, 2009. Published December 2009. Originallyapproved in 2004. Last previous edition approved in 2009 as F2418-09. DOI:10.1520/F2418-09A.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM
14、Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshoho
15、cken, PA 19428-2959, United States.Section 12 Buried Structures and Tunnel Liners, 12.12Thermoplastic Pipes33. Terminology3.1 Definitions: Definitions used in this specification are inaccordance with the definitions in Terminology F412, andabbreviations are in accordance with Terminology D1600,unles
16、s otherwise indicated.3.1.1 chamberan arch-shaped structure manufactured ofthermoplastic with an open-bottom that is supported on feetand may be joined into rows that begin with, and are termi-nated by, end caps (see Fig. 1).3.1.2 corrugated walla wall profile consisting of a regularpattern of alter
17、nating crests and valleys (see Fig. 2).3.1.3 crestthe element of a corrugation located at theexterior surface of the chamber wall, spanning between twoweb elements (see Fig. 2).3.1.4 crownthe center section of a chamber typicallylocated at the highest point as the chamber is traversedcircumferential
18、ly.3.1.5 end capa bulkhead provided to begin and terminatea chamber, or row of chambers, and prevent intrusion ofsurrounding embedment materials.3.1.6 foota flat, turned out section that is manufacturedwith the chamber to provide a bearing surface for transfer ofvertical loads to the bedding (see Fi
19、g. 1).3.1.7 inspection portan opening in the chamber wall thatallows access to the chamber interior.3.1.8 nominal heighta designation describing the approxi-mate vertical dimension of the chamber at its crown (see Fig.1).3.1.9 nominal widtha designation describing the approxi-mate outside horizontal
20、 dimension of the chamber at its feet(see Fig. 1).3.1.10 periodthe length of a single repetition of therepeated corrugation, defined as the distance from the center-line of a valley element to the centerline of the next valleyelement (see Fig. 2).3.1.11 risethe vertical distance from the chamber bas
21、e(bottom of the chamber foot) to the inside of a chamber wallvalley element at the crown as depicted in Fig. 1.3.1.12 spanthe horizontal distance from the interior ofone sidewall valley element to the interior of the other sidewallvalley element as depicted in Fig. 1.3.1.13 valleythe element of a co
22、rrugated wall located atthe interior surface of the chamber wall, spanning between twowebs (see Fig. 2).3.1.14 webthe element of a corrugated wall that connectsa crest element to a valley element (see Fig. 2).4. Materials and Manufacture4.1 This specification covers chambers made from virginand rewo
23、rk PP plastic materials as defined by material me-chanical requirements and chamber performance requirements.4.2 Polypropylene materials may be combined with copoly-mers, pigments, and impact modifiers which together aresuitable for manufacture. Manufactured chamber and end capmaterial shall meet or
24、 exceed the requirements of designationPP0330B99945, Specification D4101. The minimum amountof polypropylene plastic in the material shall be 95 % byweight. The minimum tensile stress at yield, Test MethodD638, shall not be less than 3 100 psi (21 MPa). The minimumflexural modulus (1 % secant), Test
25、 Method D790, ProcedureA, shall not be less than 145 000 psi (1 000 MPa). Theminimum Izod Impact Resistance at 73 F (23 C), Method Ain Test Method D256, shall not be less than 4 ft-lb/in. (215J/m). Materials shall meet the creep requirements in 5.3.5 and5.3.6 of this standard.NOTE 1The polypropylene
26、 melt flow rate is specified for chambermanufacture by injection molding. The melt flow rate may be less than 10if the manufactured chamber meets all other requirements in this standard.This cell class will be re-evaluated when new chamber classifications areadded to Table 1.NOTE 2Polypropylene plas
27、tic is prepared by the polymerization ofpropylene or propylene with other alpha olefins as described in Specifi-cation D4101.4.3 Rework MaterialClean rework material generatedfrom the manufacturers own chambers may be used by thesame manufacturer, using the same type and grade resin,provided that th
28、e chambers produced meet all the requirementsof this specification.5. Requirements5.1 Chamber Description5.1.1 Chambers shall be produced in arch shapes symmetricabout the crown with corrugated wall and integral feet for basesupport (see Fig. 1). Any arch shape is acceptable provided allthe requirem
29、ents of this specification are met.NOTE 3For purposes of structural optimization, the wall geometry(e.g. corrugation height, crest width, valley width, and web pitch) mayvary around the chamber circumference.5.1.2 Chambers shall be produced with maximum span atthe base of the chamber (bottom of the
30、chamber foot).3AASHTO LRFD Bridge Design Specifications-Dual Units, Third Edition,2004. Available from American Association of State Highway and TransportationOfficials (AASHTO), 444 N. Capitol St., NW, Suite 249, Washington, DC 20001.NOTEThe model chamber shown in this standard is intended only asa
31、 general illustration. Any chamber configuration is permitted, as long asit meets all the specified requirements of this standard.FIG. 1 Model ChamberF2418 09a25.1.3 Chambers may include access ports for inspection orcleanout. Chambers with access ports shall meet the require-ments of this standard
32、with access ports open and closed.5.1.4 Chambers may include perforations. Perforations shallbe cleanly fabricated in a size, shape, and pattern determinedby the manufacturer. Chambers with perforations shall meetthe requirements of this standard.5.1.5 Chamber sections shall be manufactured to conne
33、ct atthe ends to provide rows of various lengths. Joints shall beconfigured to prevent intrusion of the surrounding embedmentmaterial and shall be capable of carrying the full load for whichthe chamber is designed.5.1.6 Each row of chambers shall begin and terminate withan end cap.5.1.7 Chamber clas
34、sifications, dimensions, and tolerancesare provided in Table 1. Chamber classifications are based onthe nominal height and nominal width of the chambers, asillustrated in Fig. 1. Classifications shall be manufactured withthe specified rise and span with tolerances, minimum footwidth, and minimum wal
35、l thickness.5.2 WorkmanshipThe chambers shall be homogeneousthroughout and essentially uniform in color, opacity, density,and other properties. The interior and exterior surfaces shall befree of chalking, sticky, or tacky material. The chamber wallsshall be free of cracks, blisters, voids, foreign i
36、nclusions, orother defects that are visible to the naked eye and may affectthe wall integrity.5.3 Physical and Mechanical Properties of Finished Cham-ber:5.3.1 Minimum Wall ThicknessChambers shall have awall thickness not less than the minimum wall thickness shownin Table 1 when measured in accordan
37、ce with 6.2.1.5.3.2 Minimum Foot WidthChambers shall have a footwidth not less than the minimum foot width as shown in Table1 when measured in accordance with 6.2.2 (see also Fig. 1).5.3.3 Rise and Span DimensionsChambers shall meet therise and span dimension requirements shown in Table 1 whenmeasur
38、ed in accordance with 6.2.3 and 6.2.4 (see also Fig. 1).5.3.4 Deviation From StraightnessThe chamber and itssupport feet shall not have a deviation from straightness greaterthan L/100, where L is the length of an individual chamber,when measured in accordance with 6.2.5.NOTE 4This check is to be mad
39、e at the time of manufacture and isincluded to prevent pre-installation deformations in a chamber that meetsall other requirements of this standard.5.3.5 Creep Rupture StrengthSpecimens fabricated in thesame manner and composed of the same materials, includingall additives, as the finished chambers
40、shall have a 50 yearcreep rupture tensile strength at 73 F (23 C) not less than 700psi (4.8 MPa), when determined in accordance with 6.2.6.5.3.6 Creep ModulusSpecimens fabricated in the samemanner and composed of the same materials, including alladditives, as the finished chambers shall have a 50 ye
41、ar tensilecreep modulus at 73 F (23 C) not less than 24 000 psi (165MPa) when tested at a stress level of 500 psi (3.5 MPa) ordesign service stress, whichever is greater. The creep modulusshall be determined in accordance with 6.2.7. The actual testderived creep modulus shall be used in the design o
42、f thechamber (Note 5).NOTE 5The specified minimum modulus provides assurance of long-term stiffness for a chamber resin. It does not provide assurance that allchambers manufactured with a resin of this stiffness with be adequate forall long-term load conditions. Structural calculations to demonstrat
43、eNOTEThe corrugation profile shown in this standard is intended only as a general illustration.Any corrugation pattern is permitted, as long as it meetsall the specified test requirements of this standard.FIG. 2 Model Corrugated WallTABLE 1 Classifications, Dimensions, and TolerancesChamberClassific
44、ationNominalHeightNominalWidthRise SpanMinimumFoot WidthWallThicknessMinimumArchStiffnessConstantAAverage Minimumin. (mm) in. (mm)Averagein. (mm)Tolerance 6in (mm)Averagein. (mm)Tolerance 6in (mm) in. (mm) in. (mm) in. (mm) lb/ft/%16333 16 (406) 33 (838) 13.1 (333) 0.4 (10) 24.3 (617) 0.4 (10) 4.0 (
45、100) 0.130 (3.3) 0.120 (3.0) 30030351 30 (762) 51 (1295) 26.7 (678) 0.4 (10) 42.6 (1082) 0.4 (10) 4.0 (100) 0.180 (4.6) 0.165 (4.2) 30045376 45 (1143) 76 (1930) 41.0 (1041) 1.0 (25) 67 (1702) 2.0 (51) 5.0 (127) 0.225 (5.7) 0.205 (5.2) 250AThe values for arch stiffness should not be considered compar
46、able to values of pipe stiffness.F2418 09a3adequacy are still required in accordance with 5.5 and 5.6.2.NOTE 6The 50 year creep rupture strength and 50 year creep modulusvalues, determined by the test methods in 6.2.6 and 6.2.7, are used todefine the slope of the logarithmic regression curves to des
47、cribe therequired material properties sampled from the product. They are not to beinterpreted as service life limits.5.3.7 Arch Stiffness ConstantChambers shall have an archstiffness constant (ASC) not less than the minimum archstiffness constant shown in Table 1 when determined inaccordance with 6.
48、2.8.5.3.8 FlatteningChambers shall show neither splitting,cracking, or breaking under normal light and the unaided eyenor loss of load carrying capacity when tested in accordancewith 6.2.9.5.4 Accelerated WeatheringSpecimens fabricated in thesame manner and composed of the same materials as thefinis
49、hed chambers shall meet all material requirements in 4.2after accelerated weathering described in 6.3.5.5 Installation RequirementsThe chamber manufacturershall provide the purchaser with the requirements for theproper installation of chambers and the minimum and maxi-mum allowable cover height for specific traffic and non-trafficloading conditions. The installation requirements shall bebased on a design that satisfies the safety factors specified inthe AASHTO LRFD Bridge Design Specifications, Section12.12 for Thermoplastic Pipe for earth an