ASTM F2519-2005(2011) Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors 《商用厨房过滤器和萃取器的润滑脂颗粒捕获效率的标准试验方法》.pdf

上传人:diecharacter305 文档编号:538899 上传时间:2018-12-07 格式:PDF 页数:20 大小:251.90KB
下载 相关 举报
ASTM F2519-2005(2011) Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors 《商用厨房过滤器和萃取器的润滑脂颗粒捕获效率的标准试验方法》.pdf_第1页
第1页 / 共20页
ASTM F2519-2005(2011) Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors 《商用厨房过滤器和萃取器的润滑脂颗粒捕获效率的标准试验方法》.pdf_第2页
第2页 / 共20页
ASTM F2519-2005(2011) Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors 《商用厨房过滤器和萃取器的润滑脂颗粒捕获效率的标准试验方法》.pdf_第3页
第3页 / 共20页
ASTM F2519-2005(2011) Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors 《商用厨房过滤器和萃取器的润滑脂颗粒捕获效率的标准试验方法》.pdf_第4页
第4页 / 共20页
ASTM F2519-2005(2011) Standard Test Method for Grease Particle Capture Efficiency of Commercial Kitchen Filters and Extractors 《商用厨房过滤器和萃取器的润滑脂颗粒捕获效率的标准试验方法》.pdf_第5页
第5页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F2519 05 (Reapproved 2011)An American National StandardStandard Test Method forGrease Particle Capture Efficiency of Commercial KitchenFilters and Extractors1This standard is issued under the fixed designation F2519; the number immediately following the designation indicates the year of

2、original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method can be used to determine the greaseparticl

3、e capture efficiency of components and systems used incommercial kitchens to capture grease effluent prior to enteringthe exhaust duct. The results can be used to select a filtersystem best suited to a particular application.1.2 This test method is applicable to filter components andsystems. The per

4、formance information is obtained for new orclean filters and does not include the performance of used orloaded filters.1.3 The filter can be evaluated with respect to the following(where applicable):1.3.1 Pressure drop as a function of airflow through the filter(10.3), and1.3.2 Particulate capture e

5、fficiency by particle size (10.4).1.4 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are for informa-tion only.1.5 This test method may involve hazardous materials,operations, and equipment. This standard does not purport toaddress all of the saf

6、ety concerns, if any, associated with itsuse. It is the responsibility of the user of this standard toestablish appropriate safety and health practices and deter-mine the applicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASHRAE Standard:2ANSI/ASHRAE Standard 52.2-1999,

7、Method of TestingGeneral Ventilation Air-Cleaning Devices for RemovalEfficiency by Particle Size2.2 ISO Standard:3ISO Standard 3966, Measurement of Fluid Flow in ClosedConduitsVelocityArea Method Using Pitot Static Tubes3. Terminology3.1 Definitions:3.1.1 airflow rate, nvolumetric flow rate of air t

8、hat passesthrough a filter or a bank of filters.3.1.2 capture effciency, nproportion of aerosol particlesremoved by a filter as a function of particle size, usuallyexpressed as a percentage.3.1.3 cartridge filter, nremovable extractor, a removable,integral component of listed exhaust hoods, which is

9、 typicallyconstructed of stainless steel and containing a series ofhorizontal baffles designed to remove grease and drain it into acontainer.3.1.4 fixed extractor, nwater-wash hood or linear slothood, a fixed, integral component of listed exhaust hoods,which is typically constructed of stainless ste

10、el and containinga series of horizontal baffles that run the full length of the hood.3.1.5 grease filter, ndevice installed into a hood to capturegrease effluent before it enters the exhaust duct. Severalidentical devices may be installed in parallel in a hood. Thedevice may consist of more than one

11、 component or section.3.1.6 pressure drop, nchange in static pressure betweenthe front surface of the grease filter and its rear surface underthe rated airflow rate conditions.3.1.7 reference hood, nType I exhaust hood used for the“no extractors” condition when measuring the efficiency andpressure d

12、rop of fixed extractor hoods. This is typically thesame hood that is used for testing removable grease filters andremovable cartridge filters.3.2 Symbols:E = capture efficiencyn = number of sample setsP = penetrationt = t distribution variableT = sampling timeW = counts of each size range (or channe

13、l) with testdevice(s) installedWO = counts of each size range (or channel) without testdevice(s)d = standard deviation of a sample1This test method is under the jurisdiction of ASTM Committee F26 on FoodService Equipment and is the direct responsibility of Subcommittee F26.07 onCommercial Kitchen Ve

14、ntilation.Current edition approved Oct. 1, 2011. Published January 2012. Originallyapproved in 2005. Last previous edition approved in 2005 as F2519 05. DOI:10.1520/F2519-05R11.2Available from American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE), 1791 Tullie Circ

15、le, NE, Atlanta, GA30329.3Available from International Organization for Standardization (ISO), 1 rue deVaremb, Case postale 56, CH-1211, Geneva 20, Switzerland.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.3 Subscripts:b = backgr

16、oundc = correlatione = estimatedi = sample numberlcl = lower confidence limitn = number of sample setso = observedt = testing a filterucl = upper confidence limitw = with test device(s) installedwo = without test device(s) installed4. Summary of Test Method4.1 There are three predominant classes of

17、filters in kitchenventilation grease extraction systems: removable baffle filters,removable cartridge filters, and fixed extractors.4.2 Removable baffle and cartridge filters to be tested areinstalled into the test system.4.2.1 Identical filters to be tested are installed into astandard 4-ft canopy

18、hood connected to a nominal 12-in. roundduct exhaust system. The filters should fit tightly together andinto the opening and any bypasses larger than18-in. wide onthe ends are sealed.4.2.2 For fixed-extractor systems, a reference hood shall beused for testing conditions that call for no filters to b

19、e installedin the hood. Testing requires switching between the referencehood and the fixed extractor hood.4.2.3 A filter system to be used in a non-standard canopyhood is installed at the height of actual application above thefloor and connected to a nominal 12-in. round duct exhaustsystem.4.2.4 The

20、 static pressure drop across the filters is recorded atthe test airflow.4.2.4.1 For removable baffle or cartridge filters, the net filterpressure drop is determined by subtracting the pressure drop ofthe hood when the filters are removed from the pressure dropmeasured when the filters are installed.

21、 The total exhaustvolumetric flow rate must be equal in both pressure dropmeasurements.4.2.4.2 For fixed-extractor hood systems, the pressure dropis determined by subtracting the pressure drop of the referencehood when the filters are removed from the pressure dropmeasured on the fixed-extractor hoo

22、d. The total exhaustvolumetric flow rate must be equal in both pressure dropmeasurements.4.3 The total airflow rate through the exhaust system is setso that the volumetric flow rate through the filter under test isequivalent 250 cfm per linear foot (width) of filter (based onexternal filter dimensio

23、ns).4.3.1 Performance may also be evaluated at other airflows inaccordance with manufacturer recommendations (see Appen-dix X1).4.4 Balanced makeup air shall be provided at 75 6 5F and50 6 20 % RH.4.5 Particulate capture efficiency for removable grease filteror removable cartridges is determined by

24、comparing particleconcentration versus size in the exhaust duct with and withoutthe filters installed.4.5.1 Particulate capture efficiency for hoods with fixedextractors is determined by comparing particle concentration asa function of particle size in the exhaust duct with the fixedextractor hood a

25、nd the reference hood without the filtersinstalled.4.5.2 The test aerosol is oleic acid that covers a size rangefrom 0.3 to 10 m in diameter or as specified by themanufacturer. Efficiency shall be reported as zero from 0.3 mto the lower limit of the test conditions. Particulate concentra-tion measur

26、ements (as a function of particle size) are taken inthe exhaust duct using an isokinetic sampling probe and anoptical particle counter. The particulate capture efficiency isdetermined by taking the difference between the particleconcentration with and without the filters installed at eachparticle si

27、ze range set on the particle counter.5. Significance and Use5.1 The pressure drop results can be added to the pressuredrops of other components in an exhaust system to determinethe total exhaust fan pressure requirement.5.2 The particulate capture efficiency can be used withknown particulate size em

28、ission data for a cooking appliance-food product combination to determine the total mass of greaseparticles captured by the filter, the total mass of grease particlesthat pass through the filter, and the particle size distribution ofthe grease particles that pass through the filter. Fig. 1 shows ane

29、xample particle capture efficiency curve.6. Apparatus6.1 Mandatory and Discretionary RequirementsCriticaldimensions and arrangements of the test apparatus are shownin Figs. 2-5. Vertical ductwork may also be used with the samecritical dimensions (duct diameter, length, and so forth). Alldimensions s

30、hown are mandatory unless otherwise indicated.Units shown are in inches unless otherwise indicated. Thedesign of equipment not specified, including but not limited toexhaust fan, makeup air system, and external structural sup-ports, is discretionary, but the equipment must have adequatecapacity to m

31、eet the requirements of this test method.6.2 Test Facility:6.2.1 Exhaust Hood:6.2.1.1 The test installation should have a canopy exhausthood which meets these requirements: 4 ft (1.2 m) in width anddepth, minimum 2 ft (0.61 m) in height, wall mounted with thelower edge of the hood 612 ft (2.0 m) fro

32、m the floor and witha 12 in. (0.305 m) diameter round duct collar mounted on topin the center of the hood with the rear surface of the opening1.0 in. from the back side of the hood. If the hood is installedat a different height, a distance of 46 in. must be maintainedbetween the appliance surface an

33、d bottom of the hood. Thehood shall contain means for securing grease filters under testin a position typical in application.6.2.1.2 Hoods with fixed extractors should be built to matchthe description given in 6.2.1.1 as closely as possible withoutaffecting the hoods extraction efficiency.F2519 05 (

34、2011)2FIG. 1 Particle Capture Efficiency Example CurveFIG. 2 Schematic Diagram of Test ApparatusFront Elevation View of Horizontal Test SetupF2519 05 (2011)3FIG. 3 Schematic Diagram of Test ApparatusFront Elevation ofVertical Test SetupF2519 05 (2011)46.2.1.3 The typical reference hood will be a can

35、opy exhausthood matching the one described in 6.2.1.1 and shown in Fig.6. If the hood with fixed extractors cannot be built to match6.2.1.1, then the reference hood shall be built to match the hoodwith fixed extractors.6.2.1.4 To facilitate switching hoods, the lab may buildrolling stands for each r

36、eference hood and the current hoodbeing tested. These stands may be rolled in and out of the testrig. Care should be taken to insure that both hoods are installedin the same location at the same height (612 ft) each time.6.2.1.5 The test apparatus shown in Figs. 2-5 is designed fortest filters with

37、a nominal height of 20 in. It is permitted to testa bank of several filters in parallel if the width of an individualfiltration device is less than 50 % of the width of the hood.Spacers may be added symmetrically on both ends of the filterunder test if the filter does not span the entire width of th

38、ehood.6.2.2 Round Exhaust Duct, 12 in. (0.305 m) in diameter,connected to the duct collar on the top of the exhaust hood andleading to an exhaust fan. All duct connections shall be sealed.The duct may be horizontal or vertical. If horizontal, it musthave a 90-degree elbow configured as shown in Fig.

39、 7. Theelbow must have a centerline duct radius of 14-in.NOTE 1The r/D ratio is 1.167 for this configuration.6.2.2.1 The distance from the duct collar for a verticalexhaust duct or from the end of the 90 degree elbow for ahorizontal exhaust duct to the sampling location shall be 84 in.If a different

40、 sampling location is used, or a different exhaustconfiguration is used, an aerosol uniformity test shall beconducted.6.2.2.2 The minimum distance from the sampling locationto the nearest duct fitting or fan inlet shall be 24 in.6.2.3 Exhaust Fan, capable of moving 1000 ft3/min (472L/s) through the

41、filters under test and the additional exhaustsystem components at the test static pressure condition. Thefan shall have a variable frequency drive or other means tocontrol the airflow rate. The exhaust shall be dischargedoutdoors.6.2.4 Makeup Air System, a means for providing makeup airat 75 6 5F an

42、d 50 6 20 % relative humidity to match exhaustrate without disturbing the airflow pattern near the exhausthood.6.2.5 Heat Source, a uniform electric heat source with asolid metal surface, a minimum 2 ft. deep by 3 ft. wide,maintained at an average surface temperature of 375 6 5F.NOTE 2A commercial e

43、lectric griddle with a rated input between 7and 10 kW and been shown to work well as a heat source.6.2.5.1 The cooking surface of the heat source shall be 32in. (0.81 m) above the floor. The heat source shall be centeredunder the hood from side to side and from front to back. Anyair gap between the

44、rear of the heat source and the back wallshall be sealed with a horizontal sheet of stainless steelpositioned at the same height as the rear of the heat source.6.3 Instrumentation:6.3.1 Flow Metering Station, installed in the exhaust ductfor measuring the airflow rate through the filters under test.

45、Options include a grid of local velocity measurements usingthe log-Tchebycheff method, a flow nozzle, or an orifice plate.If a nozzle or orifice plate is used, it must be mounteddownstream from the particle sampling location.6.3.1.1 Airflow rate may be determined using velocitytraverse measurements

46、according to the log-Tchebycheffmethod (ISO Standard 3966). Local velocities shall be mea-sured at the particle sampling location using a pitot tube, hotfilm anemometer, or hot wire anemometer. Velocity profilesshall be measured without filters installed in the hood and withtest filters installed. R

47、esults shall be used to determine airflowFIG. 4 Schematic Diagram of Test ApparatusPlan ViewFIG. 5 Schematic Diagram of Test ApparatusSide ElevationViewF2519 05 (2011)5rate versus fan speed with and without filters installed to set thefan speed for proper airflow rate. The airflow and filter staticp

48、ressure shall be continuously monitored.6.3.1.2 Airflow rate may be determined by means of ASMElong-radius flow nozzles with static taps. The dry bulb tem-perature, absolute pressure, and relative humidity of theexhaust airflow shall be measured in the duct immediatelyupstream of the flow-measuring

49、device. These values shall beused for calculation of airflow rate. Measurements shall bemade with and without the test filters installed to set the fanspeed for proper airflow rate at each test condition.6.3.2 Barometer, for measuring absolute pressure of the airentering the exhaust hood. The barometer shall have a resolu-tion of 0.2 in. Hg (670 Pa).6.3.3 Differential Pressure Gage, for measuring the pressuredrop across the filters under test. The pressure gage shall havea range from 0 to 5 in. water (0 to 2.5 kPa), and have anaccuracy of 1 % at full sc

展开阅读全文
相关资源
猜你喜欢
  • BS PD ISO IEC TR 19075-3-2015 Information technology Database languages SQL Technical Reports SQL Embedded in Programs using the JavaTM programming language《信息技术 数据库语言 SQL技术报告 使用JavaTM编程语言的项目嵌入SQL.pdf BS PD ISO IEC TR 19075-3-2015 Information technology Database languages SQL Technical Reports SQL Embedded in Programs using the JavaTM programming language《信息技术 数据库语言 SQL技术报告 使用JavaTM编程语言的项目嵌入SQL.pdf
  • BS PD ISO IEC TR 19075-4-2015 Information technology Database languages SQL Technical Reports SQL with Routines and types using the JavaTM programming language《信息技术 数据库语言 SQL技术报告 使用JavaTM编程语言且带有例程.pdf BS PD ISO IEC TR 19075-4-2015 Information technology Database languages SQL Technical Reports SQL with Routines and types using the JavaTM programming language《信息技术 数据库语言 SQL技术报告 使用JavaTM编程语言且带有例程.pdf
  • BS PD ISO IEC TR 19075-6-2017 Information technology Database languages SQL Technical Reports SQL support for JavaScript Object Notation (JSON)《信息技术 数据库语言 SQL技术报告 JavaScript对象表示法(JSON)的SQL支持》.pdf BS PD ISO IEC TR 19075-6-2017 Information technology Database languages SQL Technical Reports SQL support for JavaScript Object Notation (JSON)《信息技术 数据库语言 SQL技术报告 JavaScript对象表示法(JSON)的SQL支持》.pdf
  • BS PD ISO IEC TR 19075-7-2017 Information technology Database languages SQL Technical Reports Polymorphic table functions in SQL《信息技术 数据库语言 SQL技术报告 SQL多态表函数》.pdf BS PD ISO IEC TR 19075-7-2017 Information technology Database languages SQL Technical Reports Polymorphic table functions in SQL《信息技术 数据库语言 SQL技术报告 SQL多态表函数》.pdf
  • BS PD ISO IEC TR 19446-2015 Differences between the driving licences based on the ISO IEC 18013 series and the European Union specifications《基于ISO IEC 18013系列和欧盟规格的许可证》.pdf BS PD ISO IEC TR 19446-2015 Differences between the driving licences based on the ISO IEC 18013 series and the European Union specifications《基于ISO IEC 18013系列和欧盟规格的许可证》.pdf
  • BS PD ISO IEC TR 19759-2016 Software Engineering Guide to the software engineering body of knowledge (SWEBOK)《软件工程 软件工程管理知识体系 (SWEBOK) 指南》.pdf BS PD ISO IEC TR 19759-2016 Software Engineering Guide to the software engineering body of knowledge (SWEBOK)《软件工程 软件工程管理知识体系 (SWEBOK) 指南》.pdf
  • BS PD ISO IEC TR 19763-9-2015 Information technology Metamodel framework for interoperability (MFI) On demand model selection《信息技术 互操作性元模型框架 (MFI) 按需求模型的选择》.pdf BS PD ISO IEC TR 19763-9-2015 Information technology Metamodel framework for interoperability (MFI) On demand model selection《信息技术 互操作性元模型框架 (MFI) 按需求模型的选择》.pdf
  • BS PD ISO IEC TR 20000-10-2015 Information technology Service management Concepts and terminology《信息技术 服务管理 概念和术语》.pdf BS PD ISO IEC TR 20000-10-2015 Information technology Service management Concepts and terminology《信息技术 服务管理 概念和术语》.pdf
  • BS PD ISO IEC TR 20000-9-2015 Information technology Service management Guidance on the application of ISO IEC 20000-1 to cloud services《信息技术 服务管理 云服务ISO IEC 20000-1应用指南》.pdf BS PD ISO IEC TR 20000-9-2015 Information technology Service management Guidance on the application of ISO IEC 20000-1 to cloud services《信息技术 服务管理 云服务ISO IEC 20000-1应用指南》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ASTM

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1