AWWA B408-2010 Liquid Polyaluminum Chloride《液态聚氯化铝》.pdf

上传人:figureissue185 文档编号:542177 上传时间:2018-12-08 格式:PDF 页数:32 大小:486.16KB
下载 相关 举报
AWWA B408-2010 Liquid Polyaluminum Chloride《液态聚氯化铝》.pdf_第1页
第1页 / 共32页
AWWA B408-2010 Liquid Polyaluminum Chloride《液态聚氯化铝》.pdf_第2页
第2页 / 共32页
AWWA B408-2010 Liquid Polyaluminum Chloride《液态聚氯化铝》.pdf_第3页
第3页 / 共32页
AWWA B408-2010 Liquid Polyaluminum Chloride《液态聚氯化铝》.pdf_第4页
第4页 / 共32页
AWWA B408-2010 Liquid Polyaluminum Chloride《液态聚氯化铝》.pdf_第5页
第5页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、ANSI/AWWA B408-10 (Revision of ANSI/AWWA B408-03) AWWA Standard Effective date: Aug. 1, 2010. First edition approved by AWWA Board of Directors Jan. 31, 1993. This edition approved June 20, 2010. Approved by American National Standards Institute June 14, 2010. 6666 West Quincy Avenue Advocacy Denver

2、, CO 80235-3098 Communications T 800.926.7337 Conferences www.awwa.org Education and TrainingScience and TechnologySections The Authoritative Resource on Safe WaterLiquid Polyaluminum Chloride Copyright 2010 American Water Works Association. All Rights Reserved.ii AWWA Standard This document is an A

3、merican Water Works Association (AWWA) standard. It is not a specification. AWWA standards describe minimum requirements and do not contain all of the engineering and administrative information normally contained in specifi- cations. The AWWA standards usually contain options that must be evaluated

4、by the user of the standard. Until each optional feature is specified by the user, the product or service is not fully defined. AWWA publication of a standard does not constitute endorsement of any product or product type, nor does AWWA test, certify, or approve any product. The use of AWWA standard

5、s is entirely voluntary. This standard does not supersede or take precedence over or displace any applicable law, regulation, or codes of any governmental authority. AWWA standards are intended to represent a consensus of the water supply industry that the product described will provide satisfactory

6、 service. When AWWA revises or withdraws this standard, an official notice of action will be placed on the first page of the classified advertising section of Journal AWWA. The action becomes effective on the first day of the month following the month of Journal AWWA publication of the official noti

7、ce. American National Standard An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An Ameri- can National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National

8、 Standard does not in any respect preclude anyone, whether that person has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review, and users are ca

9、utioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertis- ing and promotional materials or on tags or labels that the goods are produced in conformity with particular American Natio

10、nal Standards. Caution n oti Ce : The American National Standards Institute (ANSI) approval date on the front cover of this standard indicates completion of the ANSI approval process. This American National Standard may be revised or withdrawn at any time. ANSI procedures require that action be take

11、n to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 25 West 43rd Street, Fourth Floor, New Y

12、ork, NY 10036; (212) 642-4900, or e-mailing infoansi.org. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information or retrieval system, except in the form of brief excer

13、pts or quotations for review purposes, without the written permission of the publisher. Copyright 2010 by American Water Works Association Printed in USA Copyright 2010 American Water Works Association. All Rights Reserved.iii Committee Personnel The AWWA Standards Committee on Iron Salts, Aluminum

14、Salts, and Related Coagu lant Aids, which reviewed and approved this standard, had the following personnel at the time of approval: John P. Corless, Chair General Interest Members M.B. Alvarez, CH2M HILL Inc., Orlando, Fla. (AWWA) K.K. Au, Greeley & Hansen, Chicago, Ill. (AWWA) S.C. Clark,* HDR Engi

15、neering, Denver, Colo. (AWWA) J.D. Edwards, Burgess & Niple Inc., Columbus, Ohio (AWWA) J.J. Gemin, AECOM, Kitchener, Ont. (AWWA) P.H. Hargette, Black & Veatch Engineers, Greenville, S.C. (AWWA) C.B. Lind, Mauser Corporation, East Brunswick, N.J. (AWWA) J.W. Patterson, J.W. Patterson Environmental C

16、onsultants, Silverthorne, Colo. (AWWA) S.J. Posavec,* Standards Group Liaison, AWWA, Denver, Colo. (AWWA) L.W. VandeVenter, AECOM, Wakefield, Mass. (AWWA) B.H. Wilder, Daytona Beach, Fla. (AWWA) Producer Members J.P. Crass, General Chemical Corporation, Ventura, Calif. (AWWA) J.M. Gonzalez, PVS Tech

17、nologies Inc., South New Berlin, N.Y. (AWWA) D.E. Gordon, QC Corporation, Baltimore, Md. (AWWA) L.N. Hjersted, Agro Iron, Lakeland, Fla. (AWWA) B. Keogh, Dundas, Ont. (AWWA) J.J. Pavlicek, Kemira Water Solutions, Detroit, Mich. (AWWA) K.E. Ruehl, General Chemical Corporation, Ballwin, Mo. (AWWA) G.

18、Shull, Kemira Water Solutions, Yantis, Texas (AWWA) Users Members T.A. Barber Jr., Coca-Cola Company, Atlanta, Ga. (AWWA) J.P. Corless, Rockville, Md. (AWWA) * Liaison, nonvoting Alternate Copyright 2010 American Water Works Association. All Rights Reserved.iv L.V. Landry, City of Shreveport, Shreve

19、port, La. (AWWA) C.A. Owen, Tampa Bay Water, Clearwater, Fla. (AWWA) J.S. Trotter, City of Bloomington Utilities, Bloomington, Ind. (AWWA) Copyright 2010 American Water Works Association. All Rights Reserved.v Contents All AWWA standards follow the general format indicated subsequently. Some variati

20、ons from this format may be found in a particular standard. Foreword I Introduction vii I.A Background . vii I.B History . viii I.C Acceptance . viii II Special Issues . x II.A Storage and Handling Precautions . x III Use of This Standard . x III.A Purchaser Options and Alternatives . x III.B Modifi

21、cation to Standard . xi IV Major Revisions xi V Comments . xi Standard 1 General 1.1 Scope 1 1.2 Purpose . 1 1.3 Application 1 2 References 2 3 Definitions . 2 4 Requirements 4.1 Materials . 3 4.2 Physical Requirements . 3 4.3 Chemical Requirements 3 4.4 Impurities 3 5 Verification 5.1 Sampling . 4

22、5.2 Test ProceduresGeneral . 4 5.3 PACl Content as Percent Al . 5 5.4 PACl Content as Percent Al 2 O 3 Benchmark Method 8 5.5 PACl Basicity 9 5.6 Product Turbidity 11 5.7 Chloride 11 5.8 Notice of Nonconformance . 16 6 Delivery 6.1 Marking 16 6.2 Packaging and Shipping 17 6.3 Affidavit of Compliance

23、 17 Tables 1 PACl Basicity Sample Size Guideline 10 2 Temperature Corrections for Volumetric Solution 13 SEC. PAGE SEC. PAGE Copyright 2010 American Water Works Association. All Rights Reserved.This page intentionally blank. Copyright 2010 American Water Works Association. All Rights Reserved.vii Fo

24、reword This foreword is for information only and is not a part of ANSI*/AWWA B408. I. Introduction. I.A. Background. This standard covers a variety of products based on the chemistry of aluminum salt solutions, where polyaluminum oligomers become the predominant and defining form of the aluminum cat

25、ion. The characteristics of the corresponding anion in these oligomer products, although more commonly entirely chloride, may be instead sulfate or even some ratio of these two anions in combination. There are, additionally, formulations of these products wherein a polymer (organic polyelectrolyte)

26、is blended in with inorganic oligomers to provide enhancements of specific functionalities. This standard will focus on polyaluminum chloride (PACl) productsas they are the predominant presentation of this chemistrycommercially available as liquids in the United States and Canada. This standard cove

27、rs liquid PACl for use in municipal and industrial water supplies. As a note, certain parts of this standard may be used wholly, or in part, to aid the user and producer to define and measure a specific related product chemistry being offered, though only as is appropriate and mutually agreed on bef

28、orehand by both the purchaser and supplier/manufacturer. Given these conditions, it may be necessary for the purchaser to acquire and utilize additional or different information and methodologies from that offered in this standard to allow the proper management of products in this group. Some inorga

29、nic coagulants are mixed with polymers to produce blends. Polyaluminum chloride is a misnomer, however, because these products contain a mixture of polymers (actually aggregates of oligomers) of aluminum chloride hydrox- ide (Chemical Abstract Service CAS No. 1327-41-9) with the empirical formula Al

30、 n(OH) m Cl (3nm)for 0 m 3n. At least the following five CAS numbers, 1327-41-9, 10284-64-7, 14215-15-7, 39290-78-3, and 12042-91-0, have been used for various types of PACl. Basicity (hydroxyl number) refers to the average number of hydroxide ions per aluminum atom in the PACl molecules or m/n. In

31、some PACl products, an anion other * American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036. Characterization of Inorganic Coagulant/Polymer Blends Using Refractive Index and Specific Gravity Measurements. 2004. Polyelectrolytes Standards Committee Report, B.S.

32、Johnson, Chair. J. AWWA 96:170. Copyright 2010 American Water Works Association. All Rights Reserved.viii than chloride, such as sulfate, may also be present, but this anion should be present in much lower concentrations than the chloride ion if the product is being sold as PACl. The basicity of PAC

33、l products can range from 0 to 2.5, though the basicity should not be 0 if the product is being sold as PACl. The basicity is converted to “percent basic- ity” using the following formula: percent basicity = (OH/Al) 100 3 Where: Al and OH are expressed as moles/liter The values for percent basicity

34、of liquid PACl products can range from about 10 to 83.3. The basicity of the product does not necessarily relate directly to product performance, so the highest basicity may not give the best performance in a particular application. Polyaluminum chloride products contain varying amounts of PACl, the

35、 concentra- tion of which is conventionally expressed as “percent by weight as Al” or “percent as Al.” The range of PACl content in PACl products is about 2.5 to 13 percent as alumi- num (5 to 25 percent as Al 2 O 3 ). Polyaluminum chloride can be commercially manufactured from a number of aluminum-

36、containing raw materials, including aluminum metal, alumina trihydrate, aluminum chloride, aluminum sulfate, and combinations of these. The products can contain by-product salts, such as sodium/calcium/magnesium chloride or sulfate, depending on the manufacturing process. The presence of these salts

37、 is not harmful to product performance or to those handling the product. Recognizing that the purity of PACl can vary with the manufacturing process, the purchaser should ask the supplier for information concerning potential impurities. This standard provides methods for analysis of active PACl expr

38、essed in percent as aluminum (or Al 2 O 3 ), percent basicity, turbidity, and specific gravity. I.B. History. In 1988, the AWWA Standards Committee on Iron Salts, Aluminum Salts, and Related Coagulant Aids organized a subcommittee to prepare a standard for PACl products. The first draft of the stand

39、ard was reviewed in 1989, and the final draft was approved in 1992. The first edition of ANSI/AWWA B408, Standard for Liquid Polyaluminum Chloride, was approved by the AWWA Board of Directors on Jan. 31, 1993. The second edition was approved on June 21, 1998. The third edition was approved on June 1

40、9, 2003. This edition was approved June 20, 2010. Copyright 2010 American Water Works Association. All Rights Reserved.ix I.C. Acceptance. In May 1985, the US Environmental Protection Agency (USEPA) entered into a cooperative agreement with a consortium led by NSF International (NSF) to develop volu

41、ntary third-party consensus standards and a certification program for direct and indirect drinking water additives. Other members of the original consortium included the American Water Works Association Research Foundation (AwwaRF, now Water Research Foundation) and the Conference of State Health an

42、d Environmental Managers (COSHEM). The American Water Works Association (AWWA) and the Association of State Drinking Water Administrators (ASDWA) joined later. In the United States, authority to regulate products for use in, or in contact with, drinking water rests with individual states.* Local age

43、ncies may choose to impose requirements more stringent than those required by the state. To evaluate the health effects of products and drinking water additives from such products, state and local agencies may use various references, including two standards developed under the direction of NSF, NSF

44、/ANSI 60, Drinking Water Treatment ChemicalsHealth Effects, and NSF/ANSI 61, Drinking Water System ComponentsHealth Effects. Various certification organizations may be involved in certifying products in accor- dance with NSF/ANSI 60. Individual states or local agencies have authority to accept or ac

45、credit certification organizations within their jurisdiction. Accreditation of certi- fication organizations may vary from jurisdiction to jurisdiction. Annex A, “Toxicology Review and Evaluation Procedures,” to NSF/ANSI 60 does not stipulate a maximum allowable level (MAL) of a contaminant for subs

46、tances not regulated by a USEPA final maximum contaminant level (MCL). The MALs of an unspecified list of “unregulated contaminants” are based on toxicity testing guide- lines (noncarcinogens) and risk characterization methodology (carcinogens). Use of Annex A procedures may not always be identical,

47、 depending on the certifier. ANSI/AWWA B408 addresses additives requirements in Sec. 4.4 of the standard. The transfer of contaminants from chemicals to processed water or the residual solids is becoming a problem of great concern. The language in Sec. 4.4.2 is a recommenda- tion only for direct add

48、itives used in the treatment of potable water to be certified by an accredited certification organization in accordance with NSF/ANSI 60, Drinking Water Treatment ChemicalsHealth Effects. However, users of the standard may opt * Persons outside the United States should contact the appropriate author

49、ity having jurisdiction. NSF International, 789 N. Dixboro Road, Ann Arbor, MI 48105. Copyright 2010 American Water Works Association. All Rights Reserved.x to make this certification a requirement for the product. Users of this standard should also consult the appropriate state or local agency having jurisdiction in order to 1. Determine additives requirements, including applicable standards. 2. Determine the status of certifications by parties offering to certify products for contact with, or treatment of, drinking water. 3. Determin

展开阅读全文
相关资源
猜你喜欢
  • ASHRAE IJHVAC 6-2-2000 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第6卷第2号 2000年4月》.pdf ASHRAE IJHVAC 6-2-2000 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第6卷第2号 2000年4月》.pdf
  • ASHRAE IJHVAC 6-3-2000 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第6卷第3号 2000年7月》.pdf ASHRAE IJHVAC 6-3-2000 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第6卷第3号 2000年7月》.pdf
  • ASHRAE IJHVAC 6-4-2000 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第6卷第4号 2000年10月》.pdf ASHRAE IJHVAC 6-4-2000 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第6卷第4号 2000年10月》.pdf
  • ASHRAE IJHVAC 7-1-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第1号 2001年1月》.pdf ASHRAE IJHVAC 7-1-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第1号 2001年1月》.pdf
  • ASHRAE IJHVAC 7-2-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第2号 2001年4月》.pdf ASHRAE IJHVAC 7-2-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第2号 2001年4月》.pdf
  • ASHRAE IJHVAC 7-3-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第3号 2001年10月》.pdf ASHRAE IJHVAC 7-3-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第3号 2001年10月》.pdf
  • ASHRAE IJHVAC 7-4-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第4号 2001年10月》.pdf ASHRAE IJHVAC 7-4-2001 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第7卷第4号 2001年10月》.pdf
  • ASHRAE IJHVAC 8-1-2002 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第8卷第1号 2002年1月》.pdf ASHRAE IJHVAC 8-1-2002 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第8卷第1号 2002年1月》.pdf
  • ASHRAE IJHVAC 8-2-2002 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第8卷第2号 2002年4月》.pdf ASHRAE IJHVAC 8-2-2002 International Journal of Heating Ventilating Air-Conditioning and Refrigerating Research《供暖 通风 空调和制冷研究的国际期刊 第8卷第2号 2002年4月》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > 其他

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1