BS EN 16466-1-2013 Vinegar Isotopic analysis of acetic acid and water 2H-NMR analysis of acetic acid《醋 醋酸和水的同位素分析 醋酸的氢核磁共振谱(2H-NMR)分析》.pdf

上传人:jobexamine331 文档编号:573879 上传时间:2018-12-13 格式:PDF 页数:16 大小:975.85KB
下载 相关 举报
BS EN 16466-1-2013 Vinegar Isotopic analysis of acetic acid and water 2H-NMR analysis of acetic acid《醋 醋酸和水的同位素分析 醋酸的氢核磁共振谱(2H-NMR)分析》.pdf_第1页
第1页 / 共16页
BS EN 16466-1-2013 Vinegar Isotopic analysis of acetic acid and water 2H-NMR analysis of acetic acid《醋 醋酸和水的同位素分析 醋酸的氢核磁共振谱(2H-NMR)分析》.pdf_第2页
第2页 / 共16页
BS EN 16466-1-2013 Vinegar Isotopic analysis of acetic acid and water 2H-NMR analysis of acetic acid《醋 醋酸和水的同位素分析 醋酸的氢核磁共振谱(2H-NMR)分析》.pdf_第3页
第3页 / 共16页
BS EN 16466-1-2013 Vinegar Isotopic analysis of acetic acid and water 2H-NMR analysis of acetic acid《醋 醋酸和水的同位素分析 醋酸的氢核磁共振谱(2H-NMR)分析》.pdf_第4页
第4页 / 共16页
BS EN 16466-1-2013 Vinegar Isotopic analysis of acetic acid and water 2H-NMR analysis of acetic acid《醋 醋酸和水的同位素分析 醋酸的氢核磁共振谱(2H-NMR)分析》.pdf_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、raising standards worldwideNO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAWBSI Standards PublicationBS EN 16466-1:2013Vinegar Isotopic analysis of acetic acid and waterPart 1: H-NMR analysis of acetic acidBS EN 16466-1:2013 BRITISH STANDARDNational forewordThis British Standard

2、 is the UK implementation of EN 16466-1:2013. The UK participation in its preparation was entrusted to TechnicalCommittee AW/-/2, Food Technical Committee Chairmen.A list of organizations represented on this committee can be obtained on request to its secretary.This publication does not purport to i

3、nclude all the necessary provisions of a contract. Users are responsible for its correct application. The British Standards Institution 2013. Published by BSI Standards Limited 2013ISBN 978 0 580 73584 4 ICS 67.220.10 Compliance with a British Standard cannot confer immunity from legal obligations.T

4、his British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January 2013.Amendments issued since publicationDate T e x t a f f e c t e dBS EN 16466-1:2013EUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN 16466-1 January 2013 ICS 67.220.10 English Ve

5、rsion Vinegar - Isotopic analysis of acetic acid and water - Part 1: 2H-NMR analysis of acetic acid Vinaigre - Analyse isotopique de lacide actique et de leau - Partie 1: Analyse RMN-2H de lacide actique Essig - Isotopenanalyse von Essigsure und Wasser - Teil 1: 2H-NMR-Analyse von Essigsure This Eur

6、opean Standard was approved by CEN on 3 November 2012. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references

7、concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN membe

8、r into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, Fran

9、ce, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMIT EUROPEN DE NORMALISATION EUROPISCHES KO

10、MITEE FR NORMUNG Management Centre: Avenue Marnix 17, B-1000 Brussels 2013 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 16466-1:2013: E BS EN 16466-1:2013EN 16466-1:2013 (E) 2 Contents Page Foreword . 3 Introduction 4 1 Scope 5

11、2 Normative references . 5 3 Principle 5 4 Reagents . 5 5 Apparatus . 6 6 Procedure . 6 7 Precision . 8 8 Test report 9 Annex A (informative) Results of the collaborative study (2009) 10 Bibliography 11 BS EN 16466-1:2013EN 16466-1:2013 (E) 3 Foreword This document (EN 16466-1:2013) has been based o

12、n an international collaborative study of the methods published in Analytica Chimica Acta 649 (2009) 98-105, and organised under the auspices of the Permanent International Vinegar Committee (CPIV, Brussels). This European Standard shall be given the status of a national standard, either by publicat

13、ion of an identical text or by endorsement, at the latest by July 2013, and conflicting national standards shall be withdrawn at the latest by July 2013. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not

14、 be held responsible for identifying any or all such patent rights. The European standard, Vinegar Isotopic analysis of acetic acid and water, consists of the following parts: Part 1: 2H-NMR analysis of acetic acid; Part 2: 13C-IRMS analysis of acetic acid; Part 3: 18O-IRMS analysis of water. Accord

15、ing to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany,

16、Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. BS EN 16466-1:2013EN 16466-1:2013 (E) 4 Introduction Vinegar is defined in EN 13188 as the ac

17、etic acid solution resulting from a double fermentation: a) transformation of sugars to ethanol and b) transformation of ethanol to acetic acid. Conversely, EN 13189 defines acetic acid as “Product made from materials of non-agricultural origin“. Wine vinegar is defined by the European Regulations 4

18、79/2008 and 491/2009 as the product obtained exclusively from the acetous fermentation of wine, which is in turn defined as the product exclusively obtained from the alcoholic fermentation of fresh grapes, whether crushed or not, or of grape must. In all types of vinegar, both the ethanol and the ac

19、etic acid should be obtained by a biotechnological process, and the use of acetic acids obtained from either petroleum derivatives or the pyrolysis of wood is not permitted according to the above definitions. The isotopic analysis of acetic acid extracted from vinegar by 2H-SNIF-NMR and 13C-IRMS ena

20、bles the distinction of grape origin from other sources, such as beet, cane, malt, apple and synthesis 1. BS EN 16466-1:2013EN 16466-1:2013 (E) 5 1 Scope This European Standard specifies an isotopic method to control the authenticity of vinegar. This method is applicable on acetic acid of vinegar (f

21、rom wine, cider, agricultural alcohol, etc.) in order to characterise the botanical origin of acetic acid and to detect adulterations of vinegar using synthetic acetic acid or acetic acid from a non-allowed origin (together with the method described in EN 16466-2). The isotopic analysis of the extra

22、cted acetic acid by 2H-NMR is based on a similar method already normalised for wine analysis 2. This European Standard is not applicable to complex matrices made with vinegar as an ingredient, such as balsamic vinegar. 2 Normative references The following documents, in whole or in part, are normativ

23、ely referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. Not applicable 3 Principle The acetic acid from vinegar is first

24、extracted with diethyl ether (or alternatively another solvent with similar properties such as tert-butyl methyl ether), using a liquid-liquid extractor, during at least 5 h. The solvent is then eliminated by distillation. The water content of the residue can be determined by the Karl Fischer method

25、, or alternatively the acetic acid content may be determined by 1H-NMR 3, 4. The presence of organic impurities in the residue shall be checked e.g. on the basis of 1H-NMR analysis or by GC analysis. The isotopic ratio of hydrogen atoms at the methyl site of acetic acid, (D/H)CH3, is then determined

26、 by Nuclear Magnetic Resonance analysis of the Deuterium in the acetic acid extracted from the vinegar. In case a correction is applied to the (D/H)CH3result to correct for organic impurities, this should be stated in the analytical report. 4 Reagents All reagents and consumables used shall meet sta

27、ted requirements of the used method/apparatus (as specified by the manufacturer). However, all reagents and consumables can be replaced by items with similar performance. 4.1 Diethyl ether For analysis. 4.2 Standard N,N-tetramethylurea (TMU) Standard TMU with a calibrated isotope ratio D/H. 4.3 Hexa

28、fluorobenzene (C6F6) Used as field-frequency stabilisation substance (lock). BS EN 16466-1:2013EN 16466-1:2013 (E) 6 5 Apparatus All materials listed below are commercially available and used in food control laboratories. 5.1 For the extraction of acetic acid from vinegar 5.1.1 Liquid-liquid extract

29、or of 400 ml or 800 ml. 5.1.2 Spinning band or Vigreux distillation column. 5.1.3 Round bottom flask of 500 ml. 5.1.4 Erlenmeyer of 250 ml. 5.1.5 Condenser. 5.1.6 Heater. 5.2 For 2H-SNIF-NMR determination of acetic acid from vinegar 5.2.1 Analytical balance, precision 0,1 mg. 5.2.2 Filter 0,45 m. 5.

30、2.3 NMR spectrometer fitted with a specific “deuterium“ probe tuned to a frequency vo, characteristic of channel Bo (e.g. Bo = 7,05 T, vo = 46,05 MHz and for Bo = 9,4 T, vo = 61,4 MHz) having a decoupling channel (B2) and a field-frequency stabilisation channel (lock) at the fluorine frequency. The

31、resolution measured on the spectrum, transformed without exponential multiplication (i.e. LB = 0) and expressed by the width at the half-height of the methyl signals of acetic acid and the methyl signal of TMU shall be less than 0,5 Hz. The sensitivity (signal-to-noise ratio), measured with an expon

32、ential multiplying factor LB equal to 2 shall be greater than or equal to 150 for the methyl signal of acetic acid containing less than 25 % of water. For example, using a NMR spectrometer of field Bo = 7,05 T, 400 scans are necessary to reach this value. 5.2.4 Automatic sample changer (optional). 5

33、.2.5 Data-processing software enabling lorentzian integration. 5.2.6 10 mm sample tubes of sufficient quality for NMR spectrometer 400 MHz. 5.2.7 Fume hood. 6 Procedure 6.1 Extraction of acetic acid from vinegar 6.1.1 Liquid-liquid extraction Put 125 ml of diethyl ether into a 250 ml round bottom fl

34、ask. Use a 400 ml or a 800 ml liquid-liquid extractor, depending on the acetic acid content of the vinegar (at least 6 ml of pure acetic acid shall be recovered at the end of the extraction). Pour the vinegar into the extractor and complete with diethyl ether. Adapt the round bottom flask, open the

35、water for the condenser and switch the heater on. The extraction shall last at least 5 h. Then, after this time, separate the aqueous and the organic solution. Recover the organic solution from the extractor and add it to the extract in the round bottom flask. BS EN 16466-1:2013EN 16466-1:2013 (E) 7

36、 6.1.2 Purification of the extract The round bottom flask containing the acetic acid in solution in diethyl ether is distilled on spinning band or Vigreux column. An appropriate 250 ml Erlenmeyer is used to collect the distillate. Open the water for the condenser and switch the heater on. The heatin

37、g shall be weak during the distillation of the solvent (boiling point of diethyl ether: 34 C). When the main part of the solvent has been distilled (no more vapours at the head of the column), increase the heating. The distillation is completed when the temperature at the top of the column is at lea

38、st 90 (pure acetic acid distils at 116 C 117 C). 6.1.3 Determination of the residual water content First, the traces of solvent in the acetic acid are removed by blowing dry N2on the cold residue for 10 min. The water content is determined by the Karl Fischer method. In case more than 25 % (w/w) res

39、idual water is found, the extraction should be performed again. 6.2 2H-SNIF-NMR determination of acetic acid from vinegar 6.2.1 NMR preparation Weigh approximately 3,25 g of acetic acid (solution obtained from the extraction) to the nearest 0,1 mg into a previously weighed bottle. Add approximately

40、1,1 g of N,N-tetramethylurea (TMU) as internal standard to the nearest 0,1 mg. Add 150 l of hexafluorobenzene (C6F6) as lock substance. Homogenise by shaking. The samples should be filtered on 0,45 m syringe filters while transferring into 10 mm NMR tube. Cap on the tube tightly to avoid evaporation

41、 during measurement. CAUTION It is strongly recommended to perform the NMR tube preparation under a fume hood, wearing safety glasses and gloves. 6.2.2 Acquisition of 2H-SNIF-NMR spectra Spectrometer shall be checked for sensitivity and resolution according to specifications given above (5.2). Place

42、 a sample of acetic acid prepared as in 6.1 in a 10 mm tube and introduce it into the probe. Typical conditions for obtaining 2H-SNIF-NMR spectra are as follows: a constant probe temperature (e.g. 303 K) acquisition time of at least 5,5 s for 1 200 Hz spectral width (16 Kb memory) (i.e. about 20 x 1

43、0-6at 61,4 MHz or 27 x 10-6at 46,1 MHz) 90 pulse adjustment of acquisition time: its value shall be of the same order as the dwell time parabolic detection: fix the offset O1 between the OD and CH2D reference signals for acetic acid determine the value of the decoupling offset O2 from the 1H-NMR spe

44、ctrum measured by the decoupling coil on the same tube. Good decoupling is obtained when O2 is located in the middle of the frequency interval existing between the CH3 and TMU groups. Use the wide band-decoupling mode. BS EN 16466-1:2013EN 16466-1:2013 (E) 8 For each spectrum, carry out a number of

45、accumulations NS sufficient to obtain the signal-to-noise ratio given in 5.2 and repeat this set of NS accumulations NE = 5 times. The values of NS depend on the types of spectrometer and probe used. 6.2.3 Calculations and expression of the result Appropriate software based on a complex least square

46、 curve fitting algorithm should be used to determine the signal area (phasing and baseline correction are sensitive parameters to be correctly adjusted). Calculate for each spectrum the D/HCH3(x 10-6) as follows: stHDxSstSaaxpuritymaamstxMstMaaxPaaPstCHHD )/(*3)/( = where aa is the acetic acid; st i

47、s the internal standard TMU; P is the number of equivalent deuterium positions for the considered molecular site; M is the molecular weight, in g.mol-1; m is the weighted mass in g, weight to the nearest 0,1 mg; S is the NMR signal area, integrated by data processing software; (D/H)st (x 10-6) is th

48、e certified deuterium content of TMU provided by the supplier of the reference product. Calculate average of 5 determinations and standard deviation. Optional softwares enable such calculations to be carried out on line. 7 Precision 7.1 General The values derived from the inter-laboratory study may

49、not be applicable to concentration ranges and matrices other than those given in Annex A. 7.2 Repeatability In the collaborative study organised in 2009 (see Annex A: Results of the collaborative study (2009), the average repeatability limit (r = 2,8 x sr) of the D/HCH3of acetic acid was 1,34 x 10-6. 7.3 Reproducibility In the collaborative study organized in 2009 (see Annex A: Results of the collaborative study (2009), the average reproducibility limit (R = 2,8 x sR) of the D/HCH3of acetic acid was 1,62 x 10-6. BS EN 16466-1:2013E

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > BS

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1