BS EN 60512-25-7-2005 Connectors for electronic equipment - Tests and measurements - Test 25g - Impedance reflection coefficient and voltage standing wave ratio (VSWR)《电子设备连接器 试验和测.pdf

上传人:priceawful190 文档编号:575841 上传时间:2018-12-13 格式:PDF 页数:38 大小:722.73KB
下载 相关 举报
BS EN 60512-25-7-2005 Connectors for electronic equipment - Tests and measurements - Test 25g - Impedance reflection coefficient and voltage standing wave ratio (VSWR)《电子设备连接器 试验和测.pdf_第1页
第1页 / 共38页
BS EN 60512-25-7-2005 Connectors for electronic equipment - Tests and measurements - Test 25g - Impedance reflection coefficient and voltage standing wave ratio (VSWR)《电子设备连接器 试验和测.pdf_第2页
第2页 / 共38页
BS EN 60512-25-7-2005 Connectors for electronic equipment - Tests and measurements - Test 25g - Impedance reflection coefficient and voltage standing wave ratio (VSWR)《电子设备连接器 试验和测.pdf_第3页
第3页 / 共38页
BS EN 60512-25-7-2005 Connectors for electronic equipment - Tests and measurements - Test 25g - Impedance reflection coefficient and voltage standing wave ratio (VSWR)《电子设备连接器 试验和测.pdf_第4页
第4页 / 共38页
BS EN 60512-25-7-2005 Connectors for electronic equipment - Tests and measurements - Test 25g - Impedance reflection coefficient and voltage standing wave ratio (VSWR)《电子设备连接器 试验和测.pdf_第5页
第5页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、BRITISH STANDARD BS EN 60512-25-7:2005 Connectors for electronic equipment Tests and measurements Part 25-7: Test 25g Impedance, reflection coefficient and voltage standing wave ratio (VSWR) The European Standard EN 60512-25-7:2005 has the status of a British Standard ICS 31.220.10 BS EN 60512-25-7:

2、2005 This British Standard was published under the authority of the Standards Policy and Strategy Committee on 18 April 2005 BSI 18 April 2005 ISBN 0 580 45822 9 National foreword This British Standard is the official English language version of EN 60512-25-7:2005. It is identical with IEC 60512-25-

3、7:2005. The UK participation in its preparation was entrusted to Technical Committee EPL/48/2, Connectors for electronic equipment, which has the responsibility to: A list of organizations represented on this committee can be obtained on request to its secretary. Cross-references The British Standar

4、ds which implement international or European publications referred to in this document may be found in the BSI Catalogue under the section entitled “International Standards Correspondence Index”, or by using the “Search” facility of the BSI Electronic Catalogue or of British Standards Online. This p

5、ublication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. aid enquirers to understand the text; present to the responsible interna

6、tional/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed; monitor related international and European developments and promulgate them in the UK. Summary of pages This document comprises a front cover, an inside front cover, the EN tit

7、le page, pages 2 to 35 and a back cover. The BSI copyright notice displayed in this document indicates when the document was last issued. Amendments issued since publication Amd. No. Date CommentsEUROPEAN STANDARD EN 60512-25-7 NORME EUROPENNE EUROPISCHE NORM March 2005 CENELEC European Committee fo

8、r Electrotechnical Standardization Comit Europen de Normalisation Electrotechnique Europisches Komitee fr Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B - 1050 Brussels 2005 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members

9、. Ref. No. EN 60512-25-7:2005 E ICS 31.220.10 English version Connectors for electronic equipment Tests and measurements Part 25-7: Test 25g Impedance, reflection coefficient and voltage standing wave ratio (VSWR) (IEC 60512-25-7:2004) Connecteurs pour quipements lectroniques Essais et mesures Parti

10、e 25-7: Essai 25g Impdance, coefficient de rflexion et rapport dondes stationnaires en tension (VSWR) (CEI 60512-25-7:2004) Steckverbinder fr elektronische Einrichtungen - Mess- und Prfverfahren Teil 25-7: Prfung 25g Impedanz, Reflexionskoeffizient und Spannungsstehwellenverhltnis (IEC 60512-25-7:20

11、04) This European Standard was approved by CENELEC on 2005-03-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographi

12、cal references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a

13、CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, I

14、reland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. Foreword The text of document 48B/1479/FDIS, future edition 1 of IEC 60512-25-7, prepared by SC 48B, Connectors, of IEC TC 48, Electromechani

15、cal components and mechanical structures for electronic equipment, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 60512-25-7 on 2005-03-01. The following dates were fixed: latest date by which the EN has to be implemented at national level by publication of an ident

16、ical national standard or by endorsement (dop) 2005-12-01 latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2008-03-01 _ Endorsement notice The text of the International Standard IEC 60512-25-7:2004 approved by CENELEC as a European Standard without any m

17、odification. _ Page2 EN60512257:2005 CONTENTS 1 Scope and object4 2 Terms and definitions .4 3 Test resources5 3.1 Equipment.6 3.2 Fixture.6 4 Test specimen 8 4.1 Description 8 5 Test procedure .8 5.1 Time domain .8 5.2 Frequency domain .10 6 Details to be specified.11 7 Test documentation 12 Annex

18、A (normative) Measurement system rise time.13 Annex B (informative) Determination of the near end and far end of the specimen 16 Annex C (informative) Calibration standards and test board reference traces17 Annex D (informative) Interpreting TDR impedance graphs.22 Annex E (informative) Terminations

19、 Electrical25 Annex F (informative) Practical guidance variable rise time28 Annex G (informative) Printed circuit board design considerations for electronics measurements 29 Annex H (informative) Test signal launch hardware 33 Figure A.1 Example of rise-time measurement points .13 Figure A.2 Example

20、 of TDR output; 2 curves (different rise times) and start and stop specimen points14 Figure A.3 Example of analyzer output, impedance versus log frequency plot15 Figure C.1 Typical mother-board test fixture .18 Figure C.2 Typical daughter-board test fixture 18 Figure C.3 Example of near-end referenc

21、e trace.21 Figure D.1 Example of an impedance profile of connector using a measurement system rise time of 35 ps.23 Figure D.2 Example of impedance profiles of cable at the rise time of 35 ps and 1 ns .24 Figure E.1 Single-ended terminations .26 Figure E.2 Differential (balanced) terminations .27 Fi

22、gure G.1 Microstrip (a) and stripline (b) geometries .29 Figure G.2 Buried microstrip geometry30 Table 1 Additional measurement system rise time (including fixture and filtering)9 Page3 EN60512257:2005 CONNECTORS FOR ELECTRONIC EQUIPMENT TESTS AND MEASUREMENTS Part 25-7: Test 25g Impedance, reflecti

23、on coefficient, and voltage standing wave ratio (VSWR) 1 Scope and object This part of IEC 60512 applies to interconnect assemblies, such as electrical connectors and cable assemblies, within the scope of IEC technical committee 48. This standard describes test methods to measure impedance, reflecti

24、on coefficient, and voltage standing wave ratio (VSWR) in the time and frequency domains. NOTE These test methods are written for test professionals who are knowledgeable in the electronics field and are trained to use the referenced equipment. Because the measurement values are heavily influenced b

25、y the fixturing and equipment, this method cannot describe all of the possible combinations. The major equipment manufacturers provide application notes for a more in-depth technical description of how to optimize the use of their equipment. It is imperative that the referencing document include the

26、 necessary description and sketches for the test professional to understand how to set up and perform the requested measurements. 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. 2.1 measurement system rise time rise time measured with the fixture

27、 in place, without the specimen, and with filtering (or normalization). Rise time is typically measured from 10 % to 90 % levels 2.2 specimen environment impedance impedance presented to the signal conductors by the fixture. This impedance is a result of transmission lines, termination resistors, at

28、tached receivers or signal sources, and fixture parasitics 2.3 reflection coefficient ratio of the reflected to incident voltages at any given point. The reflection coefficient is given by = incident reflected V V= O L O L Z Z Z Z + = s 11where Z Lis the fixture or specimen impedance and Z Ois the s

29、pecimen environment impedance. NOTE In the time domain, the reflection coefficient symbol typically used is rho (), while gamma () is used for frequency-domain measurements. Page4 EN60512257:2005 2.4 impedance total opposition that a circuit offers to the flow of alternating current at a particular

30、frequency. It is a combination of the resistance (R) and reactance (X) measured in ohms ( ). The equation for impedance as a function of s-parameters is: 11 11 0 1 1 s s Z Z + = = R + jX = () () + 1 1 0 Z 2.5 voltage standing wave ratio VSWR ratio of the maximum magnitude of the voltage on a line to

31、 the minimum magnitude at any given point. VSWR can be expressed by the following equations: 2.6 scattering parameter (s-parameter) s 11reflection coefficient at the input port of the device under test, defined as the ratio of the reflected voltage to the incident voltage 2.7 termination (electronic

32、s usage) impedance connected to the end of a transmission line, typically to minimize reflected energy on the line 2.8 step amplitude voltage difference between the 0 % and 100 % levels, ignoring overshoot and undershoot 3 Test resources Care should be taken when establishing the equivalence between

33、 time- and frequency-domain measurements. The relationship between the two is complex, and the application of bandwidth = (0,35/rise time) should not be used without further computations and understanding. refl inc refl inc min maxVSWR V V V V V V + = = ( ) () + =11VSWR Page5 EN60512257:2005 3.1 Equ

34、ipment 3.1.1 Time domain 3.1.1.1 A Time Domain Reflectometer (TDR) is preferred as the measurement accuracy is improved with the use of a step function, although an oscilloscope and pulse generator may be used. A network analyzer may be used with FFT (Fast Fourier Transform) software. NOTE The test

35、professional should be aware of limitations of any mathematical operation performed by an instrument (for example, FFT). 3.1.1.2 Variable rise time A means should be provided for varying the signal rise time if required. This may be included within the test equipment itself, or possibly through addi

36、tional filtering or software. NOTE The test professional should be aware of limitations of any mathematical operation performed by an instrument or software; for example, normalization or filtering. 3.1.1.3 Differential measurements The test equipment shall have the capability to perform differentia

37、l measurements directly, or provisions shall be made to calculate the impedance from multiple single-ended measurements. 3.1.2 Frequency domain 3.1.2.1 A vector network analyzer or impedance analyzer shall be used. NOTE 1 The test professional should be aware of the frequency limitations of the fixt

38、ure. NOTE 2 The test professional should be aware of any limitations of any mathematical functions performed (for example, normalization, inverse FFT, or software filtering.) 3.1.2.2 Differential measurements For differential measurements, a network analyzer and baluns may be used. NOTE The test pro

39、fessional should be aware of the electrical characteristics of the baluns that become part of the test fixture and can significantly affect the measurement. 3.2 Fixture The fixture(s) shall allow for enough measurements throughout the specimen so that variations in geometries, materials, transmissio

40、n paths, etc. may be demonstrated and provide a representative sampling of specimen performance. NOTE The fixture geometry and materials will impact the measurements due to the fixture parasitics. Usually, the intended use of the product dictates the most meaningful way to fixture it. 3.2.1 Specimen

41、 environment impedance Unless otherwise specified in the referencing document, the specimen environment impedance shall match the impedance of the test equipment. Typically this will be 50 for single-ended measurements and 100 for differential measurements. Page6 EN60512257:2005 3.2.2 Terminations W

42、hen using termination resistors, care should be taken to minimize the parasitic reactances of the terminators over the range of test frequencies (see Annex E). 3.2.3 Calibration features See Annex C for calibration and reference traces. NOTE The term “calibration” used in this document is not to be

43、confused with the periodic factory equipment calibration. Calibration is used in the sense of characterizing the fixture so that when the “fixture plus specimen” measurement is taken, the characteristics of the specimen alone can be accurately determined. 3.2.3.1 Time domain The fixture shall includ

44、e features such that the near and far ends of the specimen may be determined in time (see Annex B). The calibration plane should be as close to the specimen as possible. When the fixture includes a pc board with line traces connecting two connectors, it shall have a reference trace(s) that will allo

45、w the measurement system rise time to be measured. The reference trace shall have starting points and end points at the same location as the DUT (device under test) starting point and end point. This is because the reference trace(s) length shall be the same as the pc board traces. 3.2.3.2 Frequency

46、 domain It is necessary to include fixture features that will allow for the open, short, and load measurements to be taken. This may be accomplished by one of two methods. Firstly, provide reference traces that include the open, load and short standards. Secondly, provide an interface where these st

47、andards can be applied directly to the end of the fixture and immediately before the input plane of the device under test. When using the open/short method, the fixture shall include features such that measurements may be conducted with the far end of the driven line both open-circuited and short-ci

48、rcuited. NOTE Other calibration techniques (such as through-reflect-line) may be used. The fixture should incorporate features appropriate to that (these) calibration method(s). 3.2.4 Single-ended The fixture shall allow one signal line to be driven at a time. The far end of the driven line shall be

49、 terminated in the specimen environment impedance (typically 50 ). It is recommended that a length of transmission line be added after the sample that has a propagation delay greater than twice the measurement system rise time. Unless otherwise specified in the referencing document, a 1:1 signal to ground ratio shall be used; designated ground lines shall be

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
  • ASTM F2509-2006(2012) Standard Specification for Field-assembled Anodeless Riser Kits for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing《外径受控的聚乙烯煤.pdf ASTM F2509-2006(2012) Standard Specification for Field-assembled Anodeless Riser Kits for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing《外径受控的聚乙烯煤.pdf
  • ASTM F2509-2012 Standard Specification for Field-assembled Anodeless Riser Kits for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing《控制聚乙烯气体配送管和管道外径.pdf ASTM F2509-2012 Standard Specification for Field-assembled Anodeless Riser Kits for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing《控制聚乙烯气体配送管和管道外径.pdf
  • ASTM F2509-2015 Standard Specification for Field-assembled Anodeless Riser Kits for Use on Outside Diameter Controlled Polyethylene and Polyamide-11 (PA11) Gas Distribution Pipe an.pdf ASTM F2509-2015 Standard Specification for Field-assembled Anodeless Riser Kits for Use on Outside Diameter Controlled Polyethylene and Polyamide-11 (PA11) Gas Distribution Pipe an.pdf
  • ASTM F2510 F2510M-2007 Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures and Corrugated High Density Polyethylene Drainage Pipes《钢筋混凝土人.pdf ASTM F2510 F2510M-2007 Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures and Corrugated High Density Polyethylene Drainage Pipes《钢筋混凝土人.pdf
  • ASTM F2510 F2510M-2007(2013) Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures and Corrugated High Density Polyethylene Drainage Pipes《.pdf ASTM F2510 F2510M-2007(2013) Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures and Corrugated High Density Polyethylene Drainage Pipes《.pdf
  • ASTM F2510 F2510M-2017 Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures and Corrugated Dual- and Triple-Wall Polyethylene and Polyprop.pdf ASTM F2510 F2510M-2017 Standard Specification for Resilient Connectors Between Reinforced Concrete Manhole Structures and Corrugated Dual- and Triple-Wall Polyethylene and Polyprop.pdf
  • ASTM F2511-2005(2013) Standard Specification for Rollers Bearing Needle Ferrous Solid《铁素体固体滚针轴承的标准规范》.pdf ASTM F2511-2005(2013) Standard Specification for Rollers Bearing Needle Ferrous Solid《铁素体固体滚针轴承的标准规范》.pdf
  • ASTM F2511-2005e1 Standard Specification for Rollers Bearing Needle Ferrous Solid《铁素体固体滚针轴承的标准规范》.pdf ASTM F2511-2005e1 Standard Specification for Rollers Bearing Needle Ferrous Solid《铁素体固体滚针轴承的标准规范》.pdf
  • ASTM F2514-2008 Standard Guide for Finite Element Analysis (FEA) of Metallic Vascular Stents Subjected to Uniform Radial Loading《承受均布径向的金属血管支架有限元分析(FEA) 的标准指南》.pdf ASTM F2514-2008 Standard Guide for Finite Element Analysis (FEA) of Metallic Vascular Stents Subjected to Uniform Radial Loading《承受均布径向的金属血管支架有限元分析(FEA) 的标准指南》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1