BS EN 61511-3-2017 Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels《功能安全性 加工工业部门.pdf

上传人:progressking105 文档编号:577526 上传时间:2018-12-13 格式:PDF 页数:106 大小:5.50MB
下载 相关 举报
BS EN 61511-3-2017 Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels《功能安全性 加工工业部门.pdf_第1页
第1页 / 共106页
BS EN 61511-3-2017 Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels《功能安全性 加工工业部门.pdf_第2页
第2页 / 共106页
BS EN 61511-3-2017 Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels《功能安全性 加工工业部门.pdf_第3页
第3页 / 共106页
BS EN 61511-3-2017 Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels《功能安全性 加工工业部门.pdf_第4页
第4页 / 共106页
BS EN 61511-3-2017 Functional safety Safety instrumented systems for the process industry sector Guidance for the determination of the required safety integrity levels《功能安全性 加工工业部门.pdf_第5页
第5页 / 共106页
亲,该文档总共106页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、BSI Standards PublicationWB11885_BSI_StandardCovs_2013_AW.indd 1 15/05/2013 15:06Functional safety Safety instrumented systems for the process industry sectorPart 3: Guidance for the determination of the required safety integrity levelsBS EN 615113:2017EUROPEAN STANDARDNORME EUROPENNEEUROPISCHE NORM

2、EN 61511-3April 2017ICS 13.110; 25.040.01 Supersedes EN 61511-3:2004English VersionFunctional safety - Safety instrumented systems for the processindustry sector - Part 3: Guidance for the determination of therequired safety integrity levels(IEC 61511-3:2016)Scurit fonctionnelle - Systmes instrument

3、s de scurit pour le secteur des industries de transformation - Partie 3:Conseils pour la dtermination des niveaux exigsdintgrit de scurit(IEC 61511-3:2016)Funktionale Sicherheit - PLT-Sicherheitseinrichtungen frdie Prozessindustrie - Teil 3: Anleitung fr die Bestimmung der erforderlichen Sicherheits

4、-Integrittslevel(IEC 61511-3:2016)This European Standard was approved by CENELEC on 2016-08-25. CENELEC members are bound to comply with the CEN/CENELECInternal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.Up-to

5、-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.This European Standard exists in three official versions (English, French, German). A version in any other language made by trans

6、lation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,Den

7、mark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,Switzerland, Turkey and the United Kingdom.Euro

8、pean Committee for Electrotechnical StandardizationComit Europen de Normalisation ElectrotechniqueEuropisches Komitee fr Elektrotechnische NormungCEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2017 CENELEC All rights of exploitation in any form and by any means reserved worldwide f

9、or CENELEC Members.Ref. No. EN 61511-3:2017 ENational forewordThis British Standard is the UK implementation of EN 61511-3:2017. It is identical to IEC 61511-3:2016. It supersedes BS EN 61511-3:2004, which is withdrawn.The UK participation in its preparation was entrusted to Technical Committee GEL/

10、65/1, System considerations.A list of organizations represented on this committee can be obtained on request to its secretary.This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.ISBN 978 0 580 79125 3ICS 13.110; 0

11、1.040.35; 35.240.50; 25.040.40Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2017.Amendments/corrigenda issued since publicationDate Text affected BRITI

12、SH STANDARDBS EN 615113:2017EUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN 61511-3 April 2017 ICS 13.110; 25.040.01 Supersedes EN 61511-3:2004 English Version Functional safety - Safety instrumented systems for the process industry sector - Part 3: Guidance for the determination of the require

13、d safety integrity levels (IEC 61511-3:2016) Scurit fonctionnelle - Systmes instruments de scurit pour le secteur des industries de transformation - Partie 3: Conseils pour la dtermination des niveaux exigs dintgrit de scurit (IEC 61511-3:2016) Funktionale Sicherheit - PLT-Sicherheitseinrichtungen f

14、r die Prozessindustrie - Teil 3: Anleitung fr die Bestimmung der erforderlichen Sicherheits-Integrittslevel (IEC 61511-3:2016) This European Standard was approved by CENELEC on 2016-08-25. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions fo

15、r giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in

16、three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national e

17、lectrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal,

18、 Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comit Europen de Normalisation Electrotechnique Europisches Komitee fr Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B

19、-1000 Brussels 2017 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members. Ref. No. EN 61511-3:2017 E BS EN 615113:2017EN 61511-3:2017 2 European foreword The text of document 65A/779/FDIS, future edition 2 of IEC 61511-3, prepared by SC 65A “System a

20、spects” of IEC/TC 65 “Industrial process measurement, control and automation“ was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61511-3:2017. The following dates are fixed: latest date by which the document has to beimplemented at national level bypublication of an identic

21、al nationalstandard or by endorsement(dop) 2017-10-21 latest date by which the nationalstandards conflicting with thedocument have to be withdrawn(dow) 2020-04-21 This document supersedes EN 61511-3:2004. Attention is drawn to the possibility that some of the elements of this document may be the sub

22、ject of patent rights. CENELEC and/or CEN shall not be held responsible for identifying any or all such patent rights. Endorsement notice The text of the International Standard IEC 61511-3:2016 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibl

23、iography, the following notes have to be added for the standards indicated: IEC 61025:2006 NOTE Harmonized as EN 61025:2007. IEC 61165:2006 NOTE Harmonized as EN 61165:2006. IEC 61508-5:2010 NOTE Harmonized as EN 61508-5:2010. IEC 61508-6:2010 NOTE Harmonized as EN 61508-6:2010. IEC 62551:2012 NOTE

24、Harmonized as EN 62551:2012. ISO/TR 12489:2013 NOTE Harmonized as CEN ISO/TR 12489:2016. BS EN 615113:2017EN 61511-3:2017 3 Annex ZA (normative) Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normati

25、vely referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by co

26、mmon modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. Publication Year Title EN/HD Year IEC 61511-1 2016 Functional safety - Safety instrumented system

27、s for the process industry sector - Normative (uon) - Part 1: Framework, definitions, system, hardware and software requirements EN 61511-1 2016 BS EN 615113:2017This page deliberately left blank 2 IEC 61511-3:2016 IEC 2016 CONTENTSFOREWORD. 7 INTRODUCTION. 9 1 Scope 12 2 Normative references 13 3 T

28、erms, definitions and abbreviations 13 Annex A (informative) Risk and safety integrity general guidance . 14 A.1 General . 14 A.2 Necessary risk reduction . 14 A.3 Role of safety instrumented systems 14 A.4 Risk and safety integrity 16 A.5 Allocation of safety requirements. 17 A.6 Hazardous event, h

29、azardous situation and harmful event . 17 A.7 Safety integrity levels 18 A.8 Selection of the method for determining the required safety integrity level 18 Annex B (informative) Semi-quantitative method event tree analysis 20 B.1 Overview 20 B.2 Compliance with IEC 61511-1:2016 . 20 B.3 Example . 20

30、 B.3.1 General . 20 B.3.2 Process safety target . 21 B.3.3 Hazard analysis . 21 B.3.4 Semi-quantitative risk analysis technique 22 B.3.5 Risk analysis of existing process 23 B.3.6 Events that do not meet the process safety target . 25 B.3.7 Risk reduction using other protection layers 26 B.3.8 Risk

31、reduction using a safety instrumented function 26 Annex C (informative) The safety layer matrix method 28 C.1 Overview 28 C.2 Process safety target 29 C.3 Hazard analysis 29 C.4 Risk analysis technique . 30 C.5 Safety layer matrix 31 C.6 General procedure 32 Annex D (informative) A semi-qualitative

32、method: calibrated risk graph . 34 D.1 Overview 34 D.2 Risk graph synthesis . 34 D.3 Calibration 35 D.4 Membership and organization of the team undertaking the SIL assessment 36 D.5 Documentation of results of SIL determination . 37 D.6 Example calibration based on typical criteria 37 D.7 Using risk

33、 graphs where the consequences are environmental damage 40 D.8 Using risk graphs where the consequences are asset loss . 41 D.9 Determining the integrity level of instrument protection function where theconsequences of failure involve more than one type of loss 41 Annex E (informative) A qualitative

34、 method: risk graph . 42 2 IEC 61511-3:2016 IEC 2016 CONTENTS FOREWORD. 7 INTRODUCTION . 9 1 Scope 12 2 Normative references 13 3 Terms, definitions and abbreviations 13 Annex A (informative) Risk and safety integrity general guidance . 14 A.1 General . 14 A.2 Necessary risk reduction . 14 A.3 Role

35、of safety instrumented systems 14 A.4 Risk and safety integrity 16 A.5 Allocation of safety requirements . 17 A.6 Hazardous event, hazardous situation and harmful event . 17 A.7 Safety integrity levels 18 A.8 Selection of the method for determining the required safety integrity level 18 Annex B (inf

36、ormative) Semi-quantitative method event tree analysis 20 B.1 Overview 20 B.2 Compliance with IEC 61511-1:2016 . 20 B.3 Example . 20 B.3.1 General . 20 B.3.2 Process safety target . 21 B.3.3 Hazard analysis . 21 B.3.4 Semi-quantitative risk analysis technique 22 B.3.5 Risk analysis of existing proce

37、ss 23 B.3.6 Events that do not meet the process safety target . 25 B.3.7 Risk reduction using other protection layers 26 B.3.8 Risk reduction using a safety instrumented function 26 Annex C (informative) The safety layer matrix method 28 C.1 Overview 28 C.2 Process safety target 29 C.3 Hazard analys

38、is 29 C.4 Risk analysis technique . 30 C.5 Safety layer matrix 31 C.6 General procedure 32 Annex D (informative) A semi-qualitative method: calibrated risk graph . 34 D.1 Overview 34 D.2 Risk graph synthesis . 34 D.3 Calibration 35 D.4 Membership and organization of the team undertaking the SIL asse

39、ssment 36 D.5 Documentation of results of SIL determination . 37 D.6 Example calibration based on typical criteria 37 D.7 Using risk graphs where the consequences are environmental damage 40 D.8 Using risk graphs where the consequences are asset loss . 41 D.9 Determining the integrity level of instr

40、ument protection function where the consequences of failure involve more than one type of loss 41 Annex E (informative) A qualitative method: risk graph . 42 BS EN 615113:2017IEC 61511-3:2016 IEC 2016 3 E.1 General . 42 E.2 Typical implementation of instrumented functions 42 E.3 Risk graph synthesis

41、 . 43 E.4 Risk graph implementation: personnel protection . 43 E.5 Relevant issues to be considered during application of risk graphs . 45 Annex F (informative) Layer of protection analysis (LOPA) . 47 F.1 Overview 47 F.2 Impact event . 48 F.3 Severity level 48 F.4 Initiating cause 49 F.5 Initiation

42、 likelihood 50 F.6 Protection layers . 50 F.7 Additional mitigation 51 F.8 Independent protection layers (IPL) . 51 F.9 Intermediate event likelihood . 52 F.10 SIF integrity level 52 F.11 Mitigated event likelihood 52 F.12 Total risk . 52 F.13 Example . 53 F.13.1 General . 53 F.13.2 Impact event and

43、 severity level 53 F.13.3 Initiating cause 53 F.13.4 Initiating likelihood . 53 F.13.5 General process design 53 F.13.6 BPCS 53 F.13.7 Alarms . 53 F.13.8 Additional mitigation . 54 F.13.9 Independent protection layer(s) (IPL) 54 F.13.10 Intermediate event likelihood 54 F.13.11 SIS 54 F.13.12 Next SI

44、F 54 Annex G (informative) Layer of protection analysis using a risk matrix 56 G.1 Overview 56 G.2 Procedure . 58 G.2.1 General . 58 G.2.2 Step 1: General Information and node definition . 58 G.2.3 Step 2: Describe hazardous event . 59 G.2.4 Step 3: Evaluate initiating event frequency . 62 G.2.5 Ste

45、p 4: Determine hazardous event consequence severity and risk reduction factor 63 G.2.6 Step 5: Identify independent protection layers and risk reduction factor . 64 G.2.7 Step 6: Identify consequence mitigation systems and risk reduction factor . 65 G.2.8 Step 7: Determine CMS risk gap . 66 G.2.9 St

46、ep 8: Determine scenario risk gap 69 G.2.10 Step 9: Make recommendations when needed . 69 Annex H (informative) A qualitative approach for risk estimation any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-gov

47、ernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. 2) The formal decisions or agreements of IEC

48、 on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form of recommendations for international use and are accep

49、ted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1