BS EN 62047-22-2014 Semiconductor devices Micro-electromechanical devices Electromechanical tensile test method for conductive thin films on flexible substrates《半导体器件 微型机电装置 柔性基板上导.pdf

上传人:progressking105 文档编号:578093 上传时间:2018-12-13 格式:PDF 页数:14 大小:1.19MB
下载 相关 举报
BS EN 62047-22-2014 Semiconductor devices Micro-electromechanical devices Electromechanical tensile test method for conductive thin films on flexible substrates《半导体器件 微型机电装置 柔性基板上导.pdf_第1页
第1页 / 共14页
BS EN 62047-22-2014 Semiconductor devices Micro-electromechanical devices Electromechanical tensile test method for conductive thin films on flexible substrates《半导体器件 微型机电装置 柔性基板上导.pdf_第2页
第2页 / 共14页
BS EN 62047-22-2014 Semiconductor devices Micro-electromechanical devices Electromechanical tensile test method for conductive thin films on flexible substrates《半导体器件 微型机电装置 柔性基板上导.pdf_第3页
第3页 / 共14页
BS EN 62047-22-2014 Semiconductor devices Micro-electromechanical devices Electromechanical tensile test method for conductive thin films on flexible substrates《半导体器件 微型机电装置 柔性基板上导.pdf_第4页
第4页 / 共14页
BS EN 62047-22-2014 Semiconductor devices Micro-electromechanical devices Electromechanical tensile test method for conductive thin films on flexible substrates《半导体器件 微型机电装置 柔性基板上导.pdf_第5页
第5页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、BSI Standards PublicationSemiconductor devices Micro-electromechanical devicesPart 22: Electromechanical tensile test method for conductive thin films on flexible substratesBS EN 62047-22:2014National forewordThis British Standard is the UK implementation of EN 62047-22:2014. It isidentical to IEC 6

2、2047-22:2014.The UK participation in its preparation was entrusted to TechnicalCommittee EPL/47, Semiconductors.A list of organizations represented on this committee can be obtained onrequest to its secretary.This publication does not purport to include all the necessary provisions ofa contract. Use

3、rs are responsible for its correct application. The British Standards Institution 2014.Published by BSI Standards Limited 2014ISBN 978 0 580 77555 0ICS 01.080.99Compliance with a British Standard cannot confer immunity fromlegal obligations.This British Standard was published under the authority of

4、theStandards Policy and Strategy Committee on 31 October 2014.Amendments/corrigenda issued since publicationDate Text affectedBRITISH STANDARDBS EN 62047-22:2014EUROPEAN STANDARDNORME EUROPENNEEUROPISCHE NORMEN 62047-22 September 2014 ICS 01.080.99 English Version Semiconductor devices - Micro-elect

5、romechanical devices - Part 22: Electromechanical tensile test method for conductivethin films on flexible substrates (IEC 62047-22:2014) Dispositifs semiconducteurs - Dispositifsmicrolectromcaniques - Partie 22: Mthode dessai de traction lectromcaniquepour les couches minces conductrices sur des su

6、bstrats souples (CEI 62047-22:2014) Halbleiterbauelemente - Bauelemente derMikrosystemtechnik - Teil 22: Elektromechanisches Zug-Prfverfahren frleitfhige Dnnschichten auf flexiblen Substraten(IEC 62047-22:2014) This European Standard was approved by CENELEC on 2014-07-24. CENELEC members are bound t

7、o comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-C

8、ENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Cen

9、tre has the same status as the official versions.CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Ital

10、y, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland,Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comit Europen de Normalisation ElectrotechniqueEuropisches Komitee fr Ele

11、ktrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2014 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members. Ref. No. EN 62047-22:2014 E EN 62047-22:2014 - 2 - Foreword The text of document 47F/186/FDIS, future e

12、dition 1 of IEC 62047-22, prepared by SC 47F “Microelectromechanical systems” of IEC/TC 47 “Semiconductor devices“ was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62047-22:2014. The following dates are fixed: latest date by which the document has to be implemented at nat

13、ional level by publication of an identical national standard or by endorsement (dop) 2015-04-24 latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2017-07-24 Attention is drawn to the possibility that some of the elements of this document may be the

14、subject of patent rights. CENELEC and/or CEN shall not be held responsible for identifying any or all such patent rights. Endorsement notice The text of the International Standard IEC 62047-22:2014 was approved by CENELEC as a European Standard without any modification. BS EN 62047-22:2014- 3 - EN 6

15、2047-22:2014 Annex ZA (normative) Normative references to international publications with their corresponding European publications The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edit

16、ion cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest

17、 versions of the European Standards listed in this annex is available here: www.cenelec.eu Publication Year Title EN/HD Year IEC 62047-2 2006 Semiconductor devices - Micro-electromechanical devices - Part 2: Tensile testing method of thin film materials EN 62047-2 2006 IEC 62047-3 2006 Semiconductor

18、 devices - Micro-electromechanical devices - Part 3: Thin film standard test piece for tensile testing EN 62047-3 2006 IEC 62047-8 2011 Semiconductor devices - Micro-electromechanical devices - Part 8: Strip bending test method for tensile property measurement of thin films EN 62047-8 2011 ISO 527-3

19、 1995 Plastics - Determination of tensile properties - Part-3: Test conditions for films and sheets EN ISO 527-3 1995 BS EN 62047-22:2014 2 IEC 62047-22:2014 IEC 2014 CONTENTS 1 Scope 5 2 Normative references 5 3 Terms, definitions, symbols and designations 5 3.1 Terms and definitions 5 3.2 Symbols

20、and designations 6 4 Test piece . 6 4.1 General . 6 4.2 Shape of a test piece 6 4.3 Measurement of dimensions . 7 5 Testing method and test apparatus 7 5.1 Test principle 7 5.2 Test machine 7 5.3 Test procedure 9 5.4 Test environment 9 6 Test report . 9 Figure 1 Bilayered test piece 6 Figure 2 Schem

21、atic of an electromechanical test machine . 8 Figure 3 Electromechanical tensile grip 9 Table 1 Symbols and designations of a test piece 6 BS EN 62047-22:2014IEC 62047-22:2014 IEC 2014 5 SEMICONDUCTOR DEVICES MICRO-ELECTROMECHANICAL DEVICES Part 22: Electromechanical tensile test method for conducti

22、ve thin films on flexible substrates 1 Scope This part of IEC 62047 specifies a tensile test method to measure electromechanical properties of conductive thin micro-electromechanical systems (MEMS) materials bonded on non-conductive flexible substrates. Conductive thin-film structures on flexible su

23、bstrates are extensively utilized in MEMS, consumer products, and flexible electronics. The electrical behaviours of films on flexible substrates differ from those of freestanding films and substrates due to their interfacial interactions. Different combinations of flexible substrates and thin films

24、 often lead to various influences on the test results depending on the test conditions and the interfacial adhesion. The desired thickness of a thin MEMS material is 50 times thinner than that of the flexible substrate, whereas all other dimensions are similar to each other. 2 Normative references T

25、he following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 6204

26、7-2:2006, Semiconductor devices Micro-electromechanical devices Part 2: Tensile testing method of thin film materials IEC 62047-3:2006, Semiconductor devices Micro-electromechanical devices Part 3: Thin film standard test piece for tensile testing IEC 62047-8:2011, Semiconductor devices Micro-electr

27、omechanical devices Part 8: Strip bending test method for tensile property measurement of thin films ISO 527-3:1995, Plastics Determination of tensile properties Part 3: Test conditions for films and sheets 3 Terms, definitions, symbols and designations 3.1 Terms and definitions For the purposes of

28、this document, the following terms and definitions apply. 3.1.1 gauge factor GFratio of the change in electrical resistance divided by the original resistance (Ro, resistance in the undeformed configuration) to engineering strain (e) Note 1 to entry: Gauge factor is expressed as GF= (R RO)/ROe, wher

29、e R is the electrical resistance in the deformed configuration. BS EN 62047-22:2014 6 IEC 62047-22:2014 IEC 2014 3.1.2 elongation at electrical failure Atelicengineering strain value at which the electrical resistance starts to exceed a predefined limit 3.2 Symbols and designations The shape of the

30、test piece and symbols are presented in Figure 1 and Table 1, respectively. The overall shape of the test piece is similar to a conventional thin-film or sheet test piece (in accordance with ISO 527-3) for tensile tests, but it has a multilayered structure. Figure 1 Bilayered test piece Table 1 Symb

31、ols and designations of a test piece Symbol Unit Designation l1m Gauge length for strain and resistance change measurements l2m Overall length h1m Thickness of the first layer (or thin film) h2m Thickness of the second layer (or substrate) b m Width 4 Test piece 4.1 General The test piece shall be p

32、repared using the same fabrication process as the actual device fabricated for flexible MEMS. Machining of the test piece shall be performed carefully to prevent formation of cracks or flaws and delamination in the test piece. Chemical etching or mechanical machining with a very sharp tool shall be

33、applied to shape the test piece. 4.2 Shape of a test piece The shape of a test piece is shown in Figure 1. Because the change in electrical resistance is related to strain or stress, electrical resistance shall be measured in a region of nearly uniform strain. To measure electrical resistance, attac

34、h lead wires to the conductive thin film of the test piece. Conductive thin films deposited on flexible substrates are usually very thin compared with the diameter of the lead wires, and the lead wires are easily detached from the test piece during the electromechanical test. Therefore, place the le

35、ad wires in tensile grips and secure the electrical contact by applying mechanical contact force. Tensile grips are described in detail in 5.2. For uniform strain distribution, the shape of the test piece is a rectangular strip, not a dog bone (see Figure 1 of ISO 527-3:1995 for other rectangular te

36、st pieces). To eliminate the effect of the fixed boundary near the grips (l1), the gauge length shall be at least 20 times larger than the width (b). IEC 1841/14 l1l2b h2h1BS EN 62047-22:2014IEC 62047-22:2014 IEC 2014 7 4.3 Measurement of dimensions To analyze the test results, the test piece dimens

37、ions shall be accurately measured because the dimensions are used to determine the mechanical properties of test materials. Gauge length (l1), width (b), and thickness (h1, h2) should be measured with an error of less than 5 %. Thickness measurement shall be performed according to Annex C of IEC 620

38、47-2:2006 and to Clause 6 of IEC 62047-3:2006. There can be some combinations of thin film and substrate where it is difficult to fulfil the tolerance of thickness measurement. In this case the average and the standard deviation of the thickness measurement should be reported. 5 Testing method and t

39、est apparatus 5.1 Test principle The test is performed by applying a tensile load to a test piece. The tensile strain induced by the tensile load shall be uniform in a pre-defined gauge section in the elastic region of the substrate or the thin MEMS material. To measure the change in electrical resi

40、stance along with the change in mechanical strain, carefully select the gauge section. The gauge section for measuring mechanical strain shall be coincident with or scalable to that for measuring electrical resistance. This constraint is an important point in this standard. 5.2 Test machine The test

41、 machine is similar to a conventional tensile test machine except that it is capable of measuring electrical resistance during the test. The electrical measurement circuit can be a 2-wire or 4-wire method depending on the magnitude of the electrical resistance of the test piece. For a test piece wit

42、h an electrical resistance greater than 1 k, a 2-wire method can be utilized for ease of measurement. For a test piece with an electrical resistance less than 1 k, the 4-wire method (Kelvin method) shall be utilized to eliminate contact and lead wire resistance. A schematic of the test machine is sh

43、own in Figure 2a). For a material sensitive to stress concentration and local plastic deformation, a test piece with rounded, gripped ends shall be used according to Figure 1 of IEC 62047-2:2006, and the test machine in Figure 2b) should be used. BS EN 62047-22:2014 8 IEC 62047-22:2014 IEC 2014 a) T

44、est machine setup using grips with an electrical contact b) Test machine setup using electrical contacts on the test piece Key 1 Machine frame 2 Grip 3 Loadcell 4 Actuator 5 Volt meter 6 Specimen Figure 2 Schematic of an electromechanical test machine To measure electrical resistance, a tensile grip

45、 with electrical contacts is utilized, and the number of electrical contacts is dependent on the electrical measurement method (2-wire or 4-wire method). A schematic of the tensile grip is shown in Figure 3. In this standard, strain is estimated from the grip-to-grip distance. An optical or mechanic

46、al extensometer shall be used to measure the grip-to-grip distance. IEC 1843/14 IEC 1842/14 BS EN 62047-22:2014IEC 62047-22:2014 IEC 2014 9 a) Photograph of the installed tensile grip b) Schematic of the tensile grip Key 1 Probe pin 2 Bolt 3 Insulating jig 4 Specimen Figure 3 Electromechanical tensi

47、le grip 5.3 Test procedure The test procedure is as follows: a) Fix the test piece using the test apparatus tensile grip. The longitudinal direction of the test piece shall be aligned with the actuating direction of the test apparatus, and the deviation angle shall be less than 1 degree, as specifie

48、d in 4.4 of IEC 62047-8:2011. b) Verify the electrical measurement unit as well as the loadcell and strain measurement unit. The three signals provided by the measurement units shall be measured simultaneously with no time delay. c) Apply a tensile load to the test piece at a constant strain rate (o

49、r grip-to-grip displacement rate). The strain rate shall range from 0,01 min1to 10 min1depending on the material system of the test piece and the actual usage condition of the customer. d) Unload the test apparatus when electrical failure occurs in the test piece. After testing, carefully remove the test piece from the test apparatus to analyze its failure mechanism. If possible, preserve the fractured test piece after testing. 5.4 Test environment Because electric

展开阅读全文
相关资源
  • BS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdfBS ISO IEC 29150-2011 Information technology Security techniques Signcryption《信息技术 安全技术 签密》.pdf
  • BS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdfBS ISO IEC 15408-1-2009 Information technology - Security techniques - Evaluation criteria for IT Security - Introduction and general model《信息技术 安全技术 IT安全评价准则 一.pdf
  • BS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdfBS ISO 7295-1988+A1-2014 Tyre valves for aircraft Interchangeability dimensions《飞机轮胎汽门嘴 互换性尺寸》.pdf
  • BS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdfBS ISO 15118-1-2013 Road vehicles Vehicle to grid communication interface General information and use-case definition《道路车辆 车辆到电力通讯接口 通用信息和使用案例定义》.pdf
  • BS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdfBS ISO 13765-2-2004 Refractory mortars - Determination of consistency using the reciprocating flow table method《耐熔灰浆 使用往复流动表法测定一致性》.pdf
  • BS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdfBS ISO 10998-2008+A1-2014 Agricultural tractors Requirements for steering《农业拖拉机 操纵要求》.pdf
  • BS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdfBS Z 9-1998 Space data and information transfer systems - Advanced orbiting systems - Networks and data links - Architectural specification《空间数据和信息传输系统 高级轨道系统 网络和数据链接 结构规范》.pdf
  • BS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdfBS Z 7-1998 Space data and information transfer systems - ASCII encoded English《空间数据和信息传输系统 ASCII 编码英语》.pdf
  • BS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdfBS Z 5-1997 Space data and information transfer systems - Standard formatted data units - Control authority procedures《航天数据和信息发送系统 标准格式数据单元 控制授权程序》.pdf
  • BS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdfBS Z 4-1997 Space data and information transfer systems - Standard formatted data units - Structure and construction rules《航天数据和信息传输系统 标准格式数据单元 结构和构造规则》.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > BS

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1