CIE 59-1984 Polarization Definitions and Nomenclature Instrument Polarization (E)《偏振 定义和术语 仪器偏振(E)》.pdf

上传人:eventdump275 文档编号:594272 上传时间:2018-12-16 格式:PDF 页数:31 大小:1.92MB
下载 相关 举报
CIE 59-1984 Polarization Definitions and Nomenclature Instrument Polarization (E)《偏振 定义和术语 仪器偏振(E)》.pdf_第1页
第1页 / 共31页
CIE 59-1984 Polarization Definitions and Nomenclature Instrument Polarization (E)《偏振 定义和术语 仪器偏振(E)》.pdf_第2页
第2页 / 共31页
CIE 59-1984 Polarization Definitions and Nomenclature Instrument Polarization (E)《偏振 定义和术语 仪器偏振(E)》.pdf_第3页
第3页 / 共31页
CIE 59-1984 Polarization Definitions and Nomenclature Instrument Polarization (E)《偏振 定义和术语 仪器偏振(E)》.pdf_第4页
第4页 / 共31页
CIE 59-1984 Polarization Definitions and Nomenclature Instrument Polarization (E)《偏振 定义和术语 仪器偏振(E)》.pdf_第5页
第5页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、 CIE 59 84 9006145 0002455 317 I COMMISSION INTERNATIONALE DE LCLAIRAGE INTERNATIONAL COMMISSION ON ILLUMINA TION INTERNATIONALE BELEUCHTUNGSKOMMISSION POLARIZATION: DEFINITIONS AND NOMENCLATURE, PUBLICATION CIE No 59 (1984) BUREAU CENTRAL DE LA CIE 52, BOULEVARD MALESHERBES 75008 PARIS - FRANCE COP

2、YRIGHT International Commission on IlluminationLicensed by Information Handling ServicesThis report has been prepared by CIE Technical Committee 2.3 Materials. It has been approved by the majo- rity of the Technical Committee and is recommended for study and application. This report is not an Offi-

3、cially Agreed CIE Recommendation approved by the National Committees of the Member Countries of the CIE. It should be noted that any recommendations in this report are advisory and not mandatory. The latest CIE Proceedings or CIE Journal should be consulted regarding the current status of this repor

4、t and possible sub- sequent amendment s. Ce rapport a t prpar par le Comit Technique 2.3 Materiaux de la CIE. I1 a t approuv par la majorit du Comit Technique et il est recommand pour tude et application. Ce rapport nest pas une Recomman- dation officielle de la CIE, approuve par les Comits Nationau

5、x des Pays Membres de la CIE. I1 doit tre not que toute recommandation y figurant est donne titre de conseil et non dobligation. En ce qui con- cerne la situation prsente de ce Rapport et dventuelles modifications, il faut consulter le plus rcent Compte Rendu de Session ou Journal de la CIE. Dieser

6、Bericht wurde vom Technischen Komitee 2.3 Baustoffe der CIE ausgearbeitet. Er wurde durch die Mehrheit des Technischen Komitees gebilligt und wird zum Studium und zur Anwendung empfohlen. Dieser Bericht ist keine offiziell anerkannte CIE-Empfehlung, der die Nationalen Komitees der Mitgliedslnder der

7、 CIE zugestimmt haben. Es sei darauf hingewiesen, dass jede Empfehlung in diesem Bericht als Anleitung dient und nicht verbindlich ist. Was den gegenwrtigen Status dieses Berichtes und mgliche Nachfolge-Ausga- ben angeht, ziehe man die neuesten CIE-Tagungsberichte oder das CIE-Journal zu Rate. COPYR

8、IGHT International Commission on IlluminationLicensed by Information Handling ServicesFOREWORD This technical report has been prepared by CIE Technical Committee 2.3 Materials as part of its working programme. The members of the Committee are listed below: Chairman F. Grum USA Secretary D. Engdahl U

9、SA Group II Coordinator J. Tech USA R.D. LOZANO J.E. SHAW H. PSITBR L. MORREN P. TACHKOVA B. JORDAN J. ZETEK K. SORENSEN T. TIMONEN R. SEVE R. RATTUNDE F.J.J. CLARKE L. FILLINGER H.L. CA“ T. FUKUDA F. BURGHOUT B. BREKKE M. NOWAK J.C. MATEUS A. PASCALE J.H. BOYD A. CRUZ A. STENIUS D. EITEL F. GRUM L.

10、 DOGOPOLOVA Argentina Australia Austria Belgium Bulgaria Canada Czechoslovakia Denmark Finland France Germany, Federal Republic Great Britain Israel Japan The Netherlands Norway Poland Portugal Rumania South Africa Spain Sweden Switzerland USA USSR Hungary The members of Subcommittee Polarization: D

11、efinitions and Nomenclature, Instrument Polarization which drew up the report are: W. BUDDE F.J.J. CLARKE R.J. KING A. VIRAG T. NAKAGAWA A. STENIUS H.E. BREED E. COLLETT J.B. SHUMAKER D.L. SPOONER Canada Great Britain Great Britain, Chairman Japan Sweden USA USA USA USA HunwY - III - COPYRIGHT Inter

12、national Commission on IlluminationLicensed by Information Handling ServicesSUMMARY This report has been prepared as part of the working program of the CIE Committee TC-2.3 to study the effects of polarization on photometric and radiometric characteristics of materials. The terms defined are, in the

13、 main, those of particular relevance to photometric considerations and should not be regarded as com- prehensive to all aspects of polarization. The degree of polarization produced in a beam of light by an optical system varies with the complexity of the instrument as well as, in general, being wave

14、length dependent in a given system. Furthermore, the effect of any polarization on the determination of photometric properties will depend on the actual measurement being undertaken. Thus although polarization can have a very significant effect on many photometric meas- urements, it is difficult to

15、quantify this in a generalized way. The report discusses polarization effects in the individual optical components which make up a complete in- strument, including the source and detector. In addition, information on the main properties of polarizers, particularly those relevant to photometric consi

16、derations, is included. RESUME POLARISATION : DEFINITIONS ET NOMENCLATURE, POLARISATION INSTRUMENTALE Ce rapport a t prpar comme un lment du programme de travail du TC-2.3 de la CIE, destin tu- dier les effets de ia polarisation sur les caractristiques photomtriques et radiomtriques des matriaux. Le

17、s termes dfinis sont, pour la plupart, ceux relatifs des aspects photomtriques et ne doivent pas tre consi- drs comme couvrant tous les aspects des phnomknes de polarisation. Le degr de polarisation dun faisceau de lumire, cr par un syst6me optique, dpend de la complexit de lappareil et dpend aussi

18、en gnral de la longueur donde, pour ce systme particulier. De plus, les effets de toute polarisation sur la dtermination des proprits photomtriques dpendent du type particulier de mesures ralises. Aussi, bien que la polarisation puisse avoir des effets trs significatifs sur de nombreuses mesures pho

19、tomtriques, il est difficile de fixer des valeurs numriques sur ces effets en gnral. Ce rapport passe en revue les effets de polarisation dus isolment aux composants optiques dun instrument complet, comprenant source et dtecteur. De plus est incluse une information sur les proprits principales des p

20、olariseurs, particulirement ceux qui sont lis des aspects photomtriques. ZUSAMMENFASSUNG POLARISATION: DEFINITIONEN UND BEGRIFFE, POLARISATION VON INSTRUMENTEN Dieser Bericht ist als Teil des Arbeitsprogramms von CIE TC-2.3 verfasst, um den Einfluss der Polarisation auf photometrische und radiometri

21、sche Eigenschaften von Materialien zu untersuchen. Die definierten Begriffe sind im wesentlichen fr photometrische Betrachtungen von besonderer Bedeutung und gelten deshalb nicht fr alle Aspekte der Polarisation. - IV - COPYRIGHT International Commission on IlluminationLicensed by Information Handli

22、ng ServicesCIE 59 84 OObLY5 0002459 Tb2 I Der Polarisationsgrad eines Lichtbndels, der durch ein optisches System bestimmt wird, hbgt von der Kom- plexitt des Instruments ab und ist im allgemeinen in einem gegebenen System wellenlngenabhngig. Darber hinaus ist die Wirkung einer Polarisation auf die

23、Bestimmung von photometrischen Eigenschaften von der aus- gefhrten Messung abhngig. Obwohl die Polarisation viele photometrische Messungen wesentlich beeinflusst, ist es doch schwierig, diese in einer allgemeinen Form zu erfassen. Dieser Bericht beschreibt Polarisationseffekte einzelner optischer Ko

24、mponenten eines vollstndigen Gertes, einschliesslich Lichtquelle und Empfnger. Zustzlich werden Informationen ber wesentliche Eigenschaften von Polarisatoren, besonders der fr photometrische Anwendungen, mitgeteilt. -v- COPYRIGHT International Commission on IlluminationLicensed by Information Handli

25、ng Services CIE 59 84 900bL45 0002460 784 TABLE OF CONTENTS 1 PART 1 DEFINITIONS AND NOMENCLATURE . 1 1.1. Introduction . 1.2. Description of polarized light 1 1.3. Mathematical description of polarized light 3 4 1.4. Polarizers and depolarizers 1.5. Retarders 5 1.6. Crystal optics. 5 1.7. Optical a

26、ctivity . 6 1.8. Dichroism 7 1.9. Magneto-optic and electro-optic effects . 7 1 .lO.Photoelastic effect . 8 1.1 1 .Polarization effects on reflection 8 PART 2 INSTRUMENT POLARIZATION . 10 2.1. Polarization effects in optical components 10 2.2. Polarizers 15 2.3. Polarization in light sources 19 2.4.

27、 Polarization effects in detectors. 20 REFERENCES . 21 BIBLIOGRAPHY . 22 INDEX . 24 -VI - COPYRIGHT International Commission on IlluminationLicensed by Information Handling ServicesPART 1 DEFINITIONS AND NOMENCLATURE 1.1. INTRODUCTION The fundamental phenomena of polarization can be explained on the

28、 concept that hght is a transverse wave motion i.e. the vibrations are at nght angles to the direction of propagation. In terms of electromagne- tic theory, it is customary to consider these vibrations as being those of the electric rather than the magnetic field. The following definitions assume, u

29、nless otherwise stated, that the light is monochromatic and is travelling through a nQn-attenuating medium. 1.2. DESCRIPTION OF POLARIZED LIGHT Light in which the electric vector is at a fixed azimuth i.e. it is confmed to a plane containing the direction of propagaticm Qf the light. 1.2.2 1.2.3 1.2

30、.4 Direction of vibration The direction of the electric vector (or E vector) of a light wave. Plane of vibration The plane containing the electric vector and the direction of propagation of the light. Plane of polarization Chiginally plane of polarization was used to define the plane containing the

31、direction of propaga- tion of a light wave the terminal point of the electric vector describes an ellipse. The seme of rotation is that defined for circularly polarized light. -1- COPYRIGHT International Commission on IlluminationLicensed by Information Handling ServicesCIE 59 4 W 9006345 0002462 55

32、7 W 1.2.8 Relation between polarization states Elliptically polarized light is the most general form of polarized light, and linear and circular pola- rization can be regarded as special cases of this more general form. Circularly (elliptically) polarized light can be considered as being composed of

33、 two components with orthogonal states of linear polarization, the components being equal (unequal) in amplitude and differ- ing in phase by n/2. 1.2.9 Ellipticity If, in an elliptically polarized beam of light, a and b are the major and minor semi axes of the ellipse respectively (i.e. they are the

34、 maximum and minimum values of the electric vector), then the ratio b/a of the semi axes is called the ellipticity of the beam. 1.2.10 Eccentricity 1 Defmed as (a2 - b2)/a, this term is less used than ellipticity. 1.2.11 Azimuth The angle between the x axis of a cartesian coordinate system and a spe

35、cific direction of a polar- ization type or polarization device, e.g. the direction of vibration of linearly polarized lidit, the major axis of an elliptical vibration, the transmission axis of a hear polarizer or the fast axis of alinear retarder. 1.2.12 Unpolarized light (often referred to as natu

36、ral light) Unpolarized light is not an elementary state of polarization and is therefore difficult to define sat- isfactoriiy. The following description should however prove useful in the analysis of polarization phenomena. Unpolarized light exhibits no preferential directional property in a plane n

37、ormal to the direction of propagation of the light, the directions and phases of the electric vectors being randomly distributed. Unpolarized light can be regarded as elliptically polarized light in which the ellipticity and azimuth of the ellipse and its handedness are constantly changing at an unr

38、esolvable rate. A beam of unpolarized lightcan be regarded as being composed of two components of equal am- plitude but with orthogonal states of polarization, the two components being unrelated in phase. It should be noted that strictly monochromatic light always exhibits polarization. Thus for lig

39、ht to be unpolarized, it must possess a fmite bandwidth so that its coherence time is small compared with the measuring time of the detection system. The descriptions above assume that the light beam has uniform properties over its cross sectional area. A beam that exhibits random and spatially unre

40、solvable variations in polarization state over its aperture (or direction) will behave as though unpolarized to a detector (see Section 1.4.8, Depolarizer). 1.2.13 Orthogonal states of polarization Two states of polarization are said to be orthogonal if their characteristic points on the Poincar sph

41、ere lie at opposite ends of a diameter. Thus two states of linear polarization are said to be orthogonal if they possess the same direction of propagation but their directions of vibration differ in azimuth by 90“. Left and right-handed circular states of polarization are also said to be orthogonal.

42、 -2- COPYRIGHT International Commission on IlluminationLicensed by Information Handling Services CIE 59 84 9006345 0002463 493 Two elliptical states of polarization are said to be orthogonal if they possess identical ellipticities, opposite handedness and the azimuths of their major axes are at 90 t

43、o each other. 1.2.14 Partially polarized light A beam of hght, whether originating from a natural or artificial source, is rarely completely polar- ized or completely unpolarized. It usually possesses some degree of polarization and is then referred to as being partially polarized. A partially polar

44、ized beam can be regarded as being composed of two components, one polarized and the other unpolarized. 1.2.15 Degree of polarization Let a partially polarized beam of light be considered as being composed of a component of inten- sity Ia that is completely polarized and one of intensity Ib that is

45、unpolarized and has no coherence with the other component. Then the degree of polarization P is defined by Alternatively, let the beam be considered as being composed of the two orthogonally polarized components possessing the maximum difference of intensity. If the corresponding intensities are Ima

46、x and Imin, then Irnax - Imin Imax + Imin P= 1.3. MATHEMATICAL DESCRIPTION OF POLARIZED LIGHT 1 3.1 Poincar sphere The representation on the surface of a sphere of all states of perfectly polarized light. Points on the equator indicate linear polarization, with the upper and lower poles representing

47、 left and right-handed circularly polarized light respectively. Other points represent elliptical polarization. Points at the opposite ends of a diameter correspond to orthogonal states of polarization. The Poincar sphsre is particularly useful for determining the effect of retarders on the state of

48、 polarization of a light beam. 1.3.2 Jones vector A two element column vector describing the complex amplitudes of the x and y components of a perfectly polarized beam of light travelling along the z-axis. The Jones vector is used in conjunction with 2 x 2 matrices, representing various polarization

49、 devices, e.g. polarizers and retarders. The matrix elements are, in general, complex. The Jones calculus can deal only with the description of perfectly polarized beams. 1.3.3 Stokes vector A four element column vector with scalar parameters that describe the intensity and polarization of a beam of light. Each parameter corresponds to a time averaged intensity. The first parameter is proportional to the intensity of the wave, with the other three relating to the azimuth and

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1