1、Juli 2014DEUTSCHE NORM Normenausschuss Erdl- und Erdgasgewinnung (NG) im DINPreisgruppe 13DIN Deutsches Institut fr Normung e. V. Jede Art der Vervielfltigung, auch auszugsweise, nur mit Genehmigung des DIN Deutsches Institut fr Normung e. V., Berlin, gestattet.ICS 75.180.10!%1d4“2146517www.din.deDD
2、IN EN ISO 13503-6Erdl- und Erdgasindustrie Komplettierungsflssigkeiten und -materialien Teil 6: Verfahren zur Messung des Fluidverlustes vonKomplettierungsflssigkeiten unter dynamischen Bedingungen(ISO 13503-6:2014);Englische Fassung EN ISO 13503-6:2014Petroleum and natural gas industries Completion
3、 fluids and materials Part 6 : Procedure for measuring leakoff of completion fluids under dynamic conditions(ISO 13503-6:2014);English version EN ISO 13503-6:2014Industries du ptrole et du gaz naturel Fluides de compltion et matriaux Partie 6: Mode opratoire pour le mesurage de la perte de fluide pa
4、r filtration enconditions dynamiques des fluides de compltion (ISO 13503-6:2014);Version anglaise EN ISO 13503-6:2014Alleinverkauf der Normen durch Beuth Verlag GmbH, 10772 Berlin www.beuth.deGesamtumfang 22 SeitenDIN EN ISO 13503-6:2014-07 2 Nationales Vorwort Dieses Dokument (EN ISO 13503-6:2014)
5、wurde vom Technischen Komitee ISO/TC 67/SC 3 Drilling and completion fluids, and well cements“ in Zusammenarbeit mit dem Technischen Komitee CEN/TC 12 Materialien, Ausrstungen und Offshore-Bauwerke fr die Erdl-, petrochemische und Erdgasindustrie“ (Sekretariat: AFNOR, Frankreich) erarbeitet. Fr Deut
6、schland hat hieran der Arbeitskreis NA 109-00-01-03 AK Bohrsplung und Zemente Spiegelaus-schuss zu ISO/TC 67/SC 3“ im Normenausschuss Erdl- und Erdgasgewinnung (NG) des DIN Deutsches Institut fr Normung e. V. mitgearbeitet. Diese Europische Norm enthlt unter Bercksichtigung des DIN-Prsidialbeschluss
7、es 1/2004 nur die englische Originalfassung der ISO Norm. Diese Norm enthlt neben den gesetzlichen Einheiten auch die Einheiten F“, ft“, gal (galone)“, in (inch)“, lb (pound)“ und psi“ die in Deutschland nicht zugelassen sind. Es wird ausdrcklich darauf hingewiesen, dass die Anwendung dieser Einheit
8、en im nationalen amtlichen und geschftlichen Verkehr aufgrund des Gesetzes ber Einheiten im Messwesen nicht zulssig ist. Die Angabe dieser Einheiten dient lediglich als Hilfe im amtlichen und geschftlichen Verkehr (z. B. bei Einfuhr und Ausfuhr) mit solchen Staaten, die diese Einheit anwenden. Umrec
9、hnung: Nicht-SI-Einheit SI-Einheit Umrechnung F C C = (5/9) (F-32) ft m 1 ft = 0,304 8 m gal (galone) l 1 gal = 3,785 l in (inch) mm 1 inch = 25,4 mm lb (pound) kg 1 lb = 0,453 592 37 kg psi (psig) kPa 1 psi = 6,894 757 kPa DIN EN ISO 13503-6:2014-07 3 Nationaler Anhang NA (informativ) Begriffe Die
10、Benummerung der folgenden Begriffe ist identisch mit der Benummerung in der englischen Fassung. 2 Begriffe Fr die Anwendung dieses Dokuments gelten die folgenden Begriffe. 2.1 Gegendruck konstanter Druck, der an der Austrittsffnung aufrechterhalten wird 2.2 Zelle ein Instrument, das den Kern enthlt
11、und Prfbedingungen wie beispielsweise Prftemperatur und Einschlussdruck aufrechterhlt ANMERKUNG Die Ausrichtung der Zelle wird durch die Lngsachsen des Kerns definiert, die waagerecht oder senkrecht sind. 2.3 Filterkuchen Ablagerung von Materialien auf der Flche des Kerns oder innerhalb des porsen M
12、ediums 2.4 Filtrat Fluid, das aus dem Kern austritt 2.5 Fluideinlass Stelle, an der das Fluid durch den Spalt eintritt 2.6 Fluidverlust Grenwert des Fluidvolumens, das im Zeitverlauf in ein porses Medium entweicht 2.7 Spalt linearer Abstand zwischen der Flche des Kerns und der gegenberliegenden Wand
13、ung 2.8 Schergeschichtssimulator ein Gert zur Vorbehandlung des Fluids Quelle: ISO 13503-1:2011, Begriff 2.10 DIN EN ISO 13503-6:2014-07 4 Leerseite EUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN ISO 13503-6March 2014 ICS 75.100 English Version Petroleum and natural gas industries - Completion
14、 fluides and materials - Part 6: Procedure for measuring leakoff of completion fluids under dynamic conditions (ISO 13503-6:2014) Industries du ptrole et du gaz naturel - Fluides de compltion et matriaux - Partie 6: Mode opratoire pour le mesurage de la perte de fluide par filtration en conditions d
15、ynamiques des fluides de compltion (ISO 13503-6:2014)Erdl- und Erdgasindustrie - Komplettierungsflssigkeiten und -materialien - Teil 6: Verfahren zur Messung des Fluidverlustes von Komplettierungsflssigkeiten unter dynamischen Bedingungen (ISO 13503-6:2014) This European Standard was approved by CEN
16、 on 27 October 2012. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards
17、 may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notifi
18、ed to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Icel
19、and, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATIONCOMIT EUROPEN DE NORMALISATIONEUROPISCHES KOMITEE FR NORMUNGCEN-CENELEC Manageme
20、nt Centre: Avenue Marnix 17, B-1000 Brussels 2014 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN ISO 13503-6:2014 EContents PageForeword Introduction 1 Scope .2 Terms and definitions .3 Cell type4 Identification of test parameters
21、 (linear flow cells) .4.1 General .4.2 Temperature 4.3 Pressure 4.4 Test duration .4.5 Shear rate .4.6 Permeability 4.7 Fluid shear-history simulator (optional) .4.8 Heat-up rate .5 Test procedure 5.1 Core preparation .5.2 Round cell 5.3 Proppant conductivity cell 6 Calculations6.1 Shear rate .6.2 L
22、eakoff coefficients7 Calculation examples .7.1 Round cell Linear gel 7.2 Round cell Crosslinked gel . 147.3 Proppant conductivity cell Crosslinked gel . 158 Report .16Bibliography .182 3455677788888888991010101212EN ISO 13503-6:2014 (E)DIN EN ISO 13503-6:2014-07Foreword This document (EN ISO 13503-6
23、:2014) has been prepared by Technical Committee ISO/TC 67 “Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries“ in collaboration with Technical Committee CEN/TC 12 “Materials, equipment and offshore structures for petroleum, petrochemical and natural
24、gas industries” the secretariat of which is held by AFNOR. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2014, and conflicting national standards shall be withdrawn at the latest by Se
25、ptember 2014. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such patent rights. According to the CEN-CENELEC Internal Regulations, the national standard
26、s organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxem
27、bourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. Endorsement notice The text of ISO 13503-6:2014 has been approved by CEN as EN ISO 13503-6:2014 without any modification. 3 EN ISO 13503-6:2014 (E)DIN EN ISO 1
28、3503-6:2014-07IntroductionThe objective of this part of ISO 13503 is to provide a procedure for measuring fluid loss (leakoff) under dynamic conditions. This procedure was compiled on the basis of several years of comparative testing, debate, discussion and continued research by the industry.Dynamic
29、 fluid loss testing consists of a simulation of the circulation process where completion fluid loss occurs at a core face with appropriate shear conditions. Under dynamic conditions, the filter cake deposition and fluid loss behaviour are different to those of fluid loss under static conditions.Labo
30、ratory leakoff tests have shown that there is a dynamic effect for low-permeability formations, i.e. 50 mD, the dynamic effect is relatively small because the fluid system that penetrates the fracture face forms minimum filter cake.The determination of the fluid loss coefficients is simply a quadrat
31、ic regression of the data, with time and square root of time as variables.In this part of ISO 13503, where practical, US Customary (USC) units are included in parentheses for information. The units do not necessarily represent a direct conversion of SI to USC units, or vice versa. Consideration has
32、been given to the precision of the instrument making the measurement.4 EN ISO 13503-6:2014 (E)DIN EN ISO 13503-6:2014-071 ScopeThis part of ISO 13503 provides consistent methodology for measuring the fluid loss of completion fluids under dynamic conditions. This part of ISO 13503 is applicable to al
33、l completion fluids except those that react with porous media.2 Terms and definitionsFor the purposes of this document, the following terms and definitions apply.2.1backpressureconstant pressure maintained at the leakoff port2.2celltool that contains the core and maintains test conditions such as te
34、st temperature and confining pressureNOTE Cell orientation is defined according to whether the long axes of the core are horizontal or vertical.2.3filter cakebuild-up of materials on core face or within the porous medium2.4filtratefluid exiting the core2.5fluid inletpoint at which fluid enters the g
35、ap2.6fluid lossmeasure of fluid volume that leaks into a porous medium over time2.7gaplinear distance from the core face to the wall opposite the core face2.8shear-history simulatorapparatus used to simulate shear history in a fluidSOURCE: ISO 13503-1:2011, definition 2.105 EN ISO 13503-6:2014 (E)DI
36、N EN ISO 13503-6:2014-073 Cell typeThere are two different types of cell for measuring fluid loss under dynamic conditions:a) round cell: an example is shown in Figure 1;b) proppant conductivity cell: an example is shown in Figure 2 (see also ISO 13503-5:2006, Figure C.1).Key1 inlet port2 outlet por
37、t3 porous medium (core)4 gap5 leakoff outletFigure 1 Schematic of a typical round cell6 EN ISO 13503-6:2014 (E)DIN EN ISO 13503-6:2014-07Key1 inlet port2 outlet port3 porous medium (core)4 gap5 leakoff outletFigure 2 Schematic of a typical proppant conductivity cell4 Identification of test parameter
38、s (linear flow cells)4.1 GeneralAll calibrations shall be performed in accordance with the manufacturers recommendations.4.2 Temperature4.2.1 General considerationsTemperatures shall be measured to within 1 C (2 F) and stabilized to within 3 C (5 F) of the test temperature.4.2.2 Test temperatureThe
39、test temperature is the simulated temperature as defined by the fluid and cell temperatures.4.2.3 Fluid temperatureFluid temperature is the temperature of the test fluid measured at the fluid inlet.4.2.4 Cell temperatureCell temperature is the internal cell temperature representing the core temperat
40、ure.7 EN ISO 13503-6:2014 (E)DIN EN ISO 13503-6:2014-074.3 Pressure4.3.1 Test pressureTest pressure is the differential fluid pressure across the core length. It may be measured by a differential pressure transducer or calculated by subtracting the backpressure from the fluid pressure. It shall be c
41、ontrolled at 5 % of the design pressure.4.3.2 Fluid pressureFluid pressure is the pressure at the core face.4.3.3 BackpressureBackpressure is the pressure of the filtrate as it exits the core.4.3.4 Confining pressureThe confining pressure is the pressure used to seal the core if a Hassler sleeve is
42、used.4.4 Test durationThe test begins when the differential fluid pressure is applied and shall continue for a minimum of 60 min.4.5 Shear rateThe shear rate of the test fluid across the core face shall be 40 s1 25 %.4.6 PermeabilityUsing a compatible fluid, determine the permeability of the core pr
43、ior to the test.4.7 Fluid shear-history simulator (optional)Shear-sensitive fluids may be conditioned through a shear-history simulator as described in ISO 13503-1 and specified by the following parameters:a) tubing length;b) tubing inside diameter;c) flow rate.4.8 Heat-up rateWithin 15 min or less,
44、 the fluid temperature at the inlet shall be no lower than 5 % below and no higher than 3 C (5 F) above the desired test temperature. The inlet temperature shall be measured and recorded at a point close to the inlet port.5 Test procedure5.1 Core preparationMechanical preparation of the core shall b
45、e carried out so as to minimize any alteration of its permeability (such as by grinding and polishing the core surface). The core shall be saturated with the base fluid or 8 EN ISO 13503-6:2014 (E)DIN EN ISO 13503-6:2014-07a synthetic formation fluid (examples include KCl, NH4Cl or other brines). If
46、 the formation fluid is not known, the core shall be saturated using a non-reactive solution.5.2 Round cell5.2.1 Prepare a core with minimum dimensions of 25,4 mm (1 in) in length by 25,4 mm (1 in) in diameter.5.2.2 Saturate the core and record liquid permeability.5.2.3 Prepare the test fluid and re
47、cord fluid properties (for example in accordance with ISO 13503-1).5.2.4 Set the backpressure, typically 690 kPa (100 psi) or greater, to satisfy a desired pressure differential across the core during the test (for example a minimum pressure differential of 6 900 kPa (1 000 psi) for tests on low-per
48、meability cores).5.2.5 Heat the cell to the test temperature.5.2.6 Fluid should enter and exit the cell in a uniform flow regime so as to minimize entrance and exit effects. The distance between the core face and any loop curvature before fluid enters or exits the cell should be at least 2,5 times t
49、he diameter of the loop.5.2.7 Initialize flow across the core face at the desired shear rate with the leakoff valve closed.5.2.8 Monitor fluid temperature, fluid rate, pressure differential and fluid properties such as pH and viscosity before the fluid enters the cell.5.2.9 Open the leakoff valve and start collecting fluid leakoff data at a minimum frequency of one data point per minute for at least 60 min. The volume is collected in a container, making sure the evaporation