1、November 2012 Translation by DIN-Sprachendienst.English price group 12No part of this translation may be reproduced without prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen).I
2、CS 17.040.30!$ spatial period of a sinusoidal profile at which the optical response falls to 50 %NOTE The lateral period limit depends on the heights of surface features and the optical method used to probe the surface.1) To be published.EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 5 4 Complet
3、e specification operator4.1 GeneralThe complete specification operator (see ISO 17450-2) consists of all the operations required for an unambiguous specification. It consists of a full set of unambiguous specification operations in an unambiguous order. For areal surface texture, the complete specif
4、ication operator defines the type of surface, method of extraction, association method and filtration for surface texture by areal methods.If form error is to be included in the measurand, then a S-F surface shall be specified; otherwise, an S-L surface shall be specified.4.2 Method of extraction4.2
5、.1 Evaluation area4.2.1.1 GeneralThe evaluation area consists of a rectangular portion of the surface over which an extraction is made.The orientation of the evaluation area shall be controlled by the specification.NOTE 1 If the nesting index is the same in orthogonal directions, then the orientatio
6、n does not matter.NOTE 2 The orientation of the evaluation area is typically influenced by the form; this means that the sides of the rectangular area are parallel/orthogonal to the nominal geometry (e.g. cylinder axis, sides of a rectangular flat, etc.).4.2.1.2 S-F surfaceFor an S-F surface, if not
7、 otherwise specified, the evaluation area shall be a square. If the F-operation is a filtration operation, then the length of the sides of the square evaluation area is the same length as the filter “nesting index”. If the F-operation is an association operation, then the length of the side of the s
8、quare evaluation area is used as a substitute for the F-operation nesting index value. This chosen value for the F-operation nesting index is used for all subsequent operations.The value of the nesting index for the F-operation is normally chosen from the following series:.; 0,1 mm; 0,2 mm; 0,25 mm;
9、 0,5 mm; 0,8 mm; 1,0 mm; 2,0 mm; 2,5 mm; 5,0 mm; 8,0 mm; 10 mm; .NOTE 1 An example of an F-operation with a nesting index is a spline filter. The total least squares fit of the nominal form is an example of an F-operation without a predefined nesting index.NOTE 2 The value of the F-operation nesting
10、 index is typically chosen to be five times the scale of the coarsest structure of interest.4.2.1.3 S-L surfaceFor an S-L surface, if not otherwise specified, the evaluation area shall be a square whose sides are the same length as the L-filter nesting index value.The value of the nesting index for
11、the L-filter is normally chosen from the following series:, 0,1 mm; 0,2 mm; 0,25 mm; 0,5 mm; 0,8 mm; 1,0 mm; 2,0 mm;2,5 mm; 5,0 mm; 8,0 mm; 10 mm; .NOTE The value of the L-filter nesting index is typically five times the scale of the coarsest structure of interest.EN ISO 25178-3:2012 (E) DIN EN ISO
12、25178-3:2012-10 6 4.2.2 Type of surfaceThe default surface is the mechanical surface (see ISO 14406) obtained with a radius chosen in accordance with the F-operation or L-filter and S-filter nesting index values given in Tables 1 and 2.EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 7 Table 1 Rel
13、ationships between the F-operation or L-filter and S-filter nesting index values and the bandwidth ratioF-operation or L-filter nesting index valueS-filter nesting index valueApproximate bandwidth ratio between the F-operation or L-filter and S-filter nesting index valuesmm mm 0,10,001 100:10,000 5
14、200:10,000 2 500:10,000 1 1 000:10,20,002 100:10,001 200:10,000 5 400:10,000 2 1 000:10,250,002 5 100:10,000 8 300:10,000 25 1 000:10,50,005 100:10,002 250:10,001 500:10,000 5 1 000:10,80,008 100:10,002 5 300:10,000 8 1 000:110,01 100:10,005 200:10,002 500:10,001 1 000:120,02 100:10,01 200:10,005 40
15、0:10,002 1 000:12,50,025 100:10,008 300:10,002 5 1 000:150,05 100:10,02 250:10,01 500:10,005 1 000:180,08 100:10,025 300:10,008 1 000:1 EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 8 4.2.3 S-filter4.2.3.1 GeneralThe default S-filter is an areal Gaussian filter. The value of the S-filter nestin
16、g index (cut-off) (see ISO/TS 16610-1) in the x-direction/y-direction is normally chosen from the following series:, 0,000 5 mm; 0,000 8 mm; 0,001 mm; 0,002 mm; 0,002 5 mm; 0,005 mm; 0,008 mm; 0,01 mm; .4.2.3.2 S-filter relationships for mechanical surfacesFor mechanical surfaces, the maximum values
17、 for the sampling distance and sphere radius are calculated from the value of the S-filter nesting index, as given in Table 2.Table 2 Relationships between S-filter nesting index value, sampling distance and sphere radius for mechanical surfaceS-filter nesting index value Maximum sampling distanceMa
18、ximum sphere radiusmm mm mm. . .0,000 1 0,000 02 0,000 070,000 2 0,000 04 0,000 140,000 25 0,000 05 0,000 20,000 5 0,000 1 0,000 350,000 8 0,000 15 0,000 50,001 0,000 2 0,000 70,002 0,000 4 0,001 40,002 5 0,000 5 0,0020,005 0,001 0,003 50,008 0,001 5 0,0050,01 0,002 0,0070,02 0,004 0,0140,025 0,005
19、0,020,050 0,01 0,0350,08 0,015 0,050,1 0,02 0,070,2 0,04 0,140,25 0,05 0,2. . .NOTE 1 Starting with the value of the S-filter nesting index, the maximum sampling distance is calculated as a 5:1 ratio; the maximum sphere ratio is calculated as an approximately 1,4:1 ratio with the S-filter nesting in
20、dex value. These ratios are consistent with those contained in ISO 3274:1996.NOTE 2 The maximum sampling distances in Table 2 are considered ideal and may not be attainable for a given surface and instrument type combination.4.2.3.3 S-filter relationships for optical surfacesFor optical surfaces (el
21、ectromagnetic surfaces), the maximum values for the sampling distance and lateral period limit are related to the value of the S-filter nesting index as given in Table 3.EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 9 Table 3 Relationships between S-filter nesting index value, sampling distance
22、 and the lateral period limit for optical surfaceS-filter nesting index value aMaximum sampling distanceMaximum lateral period limitmm mm mm 0,000 1 0,000 03 0,000 10,000 2 0,000 06 0,000 20,000 25 0,000 08 0,000 250,000 5 0,000 15 0,000 50,000 8 0,000 25 0,000 80,001 0,000 3 0,0010,002 0,000 6 0,00
23、20,002 5 0,000 8 0,002 50,005 0,001 5 0,0050,008 0,002 5 0,0080,01 0,003 0,010,02 0,006 0,020,025 0,008 0,0250,05 0,015 0,050,08 0,025 0,080,1 0,03 0,10,2 0,06 0,20,25 0,08 0,25 aAlternatively, the optical method used to probe the surface may provide an inherent filter giving rise to the lateral per
24、iod limit that approximates a Gaussian filter; in these cases, the lateral period limit may be used to define the short-wavelength nesting index instead of a digital S-filter.NOTE 1 Starting with the value of the S-filter nesting index, the maximum sampling distance is calculated as a 3:1 ratio; the
25、 maximum lateral period limit is calculated as an approximately 1:1 ratio with the S-filter nesting index value.NOTE 2 The maximum sampling distances in Table 3 are considered ideal and may not be attainable for a given surface and instrument type combination.4.3 Association methodWhen applying an F
26、-operation that requires a method of association, the default method of association is total least squares.4.4 Filtration4.4.1 GeneralThe filtration depends on the type of surface (S-L surface or S-F surface) specified.For an S-L surface, both an L-filter and an F-operation are specified. For an S-F
27、 surface, only an F-operation is specified.EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 10 4.4.2 F-operationThe form shall be removed using a feature of the same class as the nominal form with the default association method.NOTE 1 For features of size, the size is variable in the default assoc
28、iation operation.NOTE 2 For non-default form removal, a filtration method according to the ISO 16610 series can also be used. A filtration masterplan of all these filtration methods can be found in ISO/TS 16610-1.4.4.3 L-filterThe default L-filter is an areal Gaussian filter (see ISO 16610-21). The
29、nesting index in the x-direction/y-direction is a mandatory part of the specification of the S-L surface.4.5 Definition area4.5.1 S-L surfaceThe default definition area for the S-L surface is a square with the same size as the evaluation area.4.5.2 S-F surfaceThe default definition area for the S-F
30、surface is a square with the same size as the evaluation area.5 General informationA decision tree for the complete specification operator is given in Annex A. If not otherwise specified, the default attribute values for the parameters defined in ISO 25178-2 that shall be applied are given in Annex
31、B. If not otherwise specified, the default units for parameters defined in ISO 25178-2 that shall be used are given in Annex C. The compatibility with surface texture profile parameters is given in Annex D. The relation to the GPS matrix model is given in Annex E.EN ISO 25178-3:2012 (E) DIN EN ISO 2
32、5178-3:2012-10 11 Annex A (informative) Decision tree for complete specification operatorY NMax sampling distanceMax sphere radiusDefined from S-filternesting index valueDefined from S-filternesting index valueEvaluationAreaAttribute ValueAttributeTable 1ValueOrientationShapeDefaultsizeControlled by
33、 the specificationRectangular, Default shape squareS-F Surface: F-operation nesting index valueS-L Surface: L-filter nesting index valueStartFormdeviationincluded inmeasurandUseS-F surfaceUseS-L surfaceS-filter typeS-filterNesting index valuebandwidth ratioDefault Gaussian filterUser specifiedGiven
34、in Table 1Mechanical surfaceDefault surface typeOptical surfaceSurfacetypeTable 2Mechanical surfaceAttribute ValueMax sampling distanceMax lateral period limitDefined from S-filternesting index valueDefined from S-filternesting index valueTable 3 Optical surfaceAttribute ValueFigure A.1 Decision tre
35、e for a complete specification operatorNOTE The order in which the attribute values for the GPS operations are determined does not reflect the order in which the GPS operations are implemented.EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 12 Annex B (normative) Default attribute values for para
36、meters from ISO 25178-2B.1 Field parametersB.1.1 Spatial parametersParagraph in ISO 25178-2: 2012Parameter (abbreviated term)Attribute Default value4.2.1 Sal fastest decay to a specified value s, with 0 s 1 s is 0,24.2.2 Str fastest and slowest decays to s, with 0 s 1 s is 0,2B.1.2 Functions and rel
37、ated parametersParagraph in ISO 25178-2: 2012Parameter (abbreviated term)Attribute Default value4.4.5.1 Vvv material ratio p p is 80 %4.4.5.2 Vvc material ratios p and q p is 10 %q is 80 %4.4.6.1 Vmp material ratio p p is 10 %4.4.6.2 Vmc material ratios p and q p is 10 %q is 80 %4.4.7 Sxp material r
38、atios p and q p is 2,5 %q is 50 %4.4.9.8 SRC Threshold, ThThis 10 %EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 13 B.2 Named feature parametersParagraph in ISO 25178-2: 2012Parameter (abbreviated term)Attribute Default value6.8.1 Spd Wolfprune nesting index X % X % is 5 %6.8.2 Spc Wolfprune ne
39、sting index X % X % is 5 %6.8.3.1 S5p Wolfprune nesting index X % X % is 5 %6.8.3.2 S5v Wolfprune nesting index X % X % is 5 %6.8.4 Sda(c) Wolfprune nesting index X % X % is 5 %The significant feature is Closed.6.8.5 Sha(c) Wolfprune nesting index X % X % is 5 %The significant feature is Closed.6.8.
40、6 Sdv(c) Wolfprune nesting index X % X % is 5 %The significant feature is Closed.6.8.7 Shv(c) Wolfprune nesting index X % X % is 5 %The significant feature is Closed.EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 14 Annex C (normative) Default units for parameters from ISO 25178-2C.1 Field param
41、etersC.1.1 Height parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default units4.1.1 Sq m4.1.2 Ssk 14.1.3 Sku 14.1.4 Sp m4.1.5 Sv m4.1.6 Sz m4.1.7 Sa mC.1.2 Spatial parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default units4.2.1 Sal m4.2.2 Str 14.5.1 Std degr
42、eesC.1.3 Hybrid parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default units4.3.1 Sdq radians4.3.2 Sdr %EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:2012-10 15 C.1.4 Functions and related parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default units4.4.2 Smr(c) %
43、4.4.3 Sdc(mr) m4.4.4 Sk, Spk, Svk m4.4.4 Smr1, Smr2 %4.4.4 Svq, Spq, Smq m4.4.7 Sxp mC.1.5 Void and material volume parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default unitsa4.4.5 Vv(p) ml m24.4.5.1 Vvv ml m24.4.5.2 Vvc ml m24.4.6 Vm(p) ml m24.4.6.1 Vmp ml m24.4.6.2 Vmc ml m2a
44、 The unit ml m2is used because oil is usually specified in litres and the amount of oil per square metre for typical applications is of the order of one millilitre.C.1.6 Other parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default units4.4.9.4 Svfc 14.4.9.5 Safc 1EN ISO 25178-3:2
45、012 (E) DIN EN ISO 25178-3:2012-10 16 C.2 Feature parametersParagraph in ISO 25178-2:2012Parameter (abbreviated term)Default units6.8.1 Spd mm26.8.2 Spc mm26.8.3 S10z m6.8.3.1 S5p m6.8.3.2 S5v m6.8.4 Sda(c) m26.8.5 Sha(c) m26.8.6 Sdv(c) m36.8.7 Shv(c) m3EN ISO 25178-3:2012 (E) DIN EN ISO 25178-3:201
46、2-10 17 Annex D (informative) Relationship with surface texture profile parametersD.1 GeneralSurface texture has traditionally been defined from profiles. This reflects the limitations in technology, with only profile measuring instruments being initially available2) . Technology has progressed and
47、areal instruments are now widely available. This has resulted in a paradigm shift from profile to areal3)and has led to the development of this areal-surface-texture chain of standards.With the long history and usage of profile parameters, knowledge has been built up and familiarity with profile met
48、hods has developed; inevitably, with the introduction of areal parameters, a comparison between surface texture profile and areal parameter values has resulted. This annex presents advice and guidelines on these relationships and on the differences between profile-surface-texture and areal-surface-texture parameters and their values.D.2 FiltrationThe biggest difference between profile and areal methods is in the filtration used. A profile extracted from an S-L surface or an S-F surface is not mathematically the same as a profile measured acc