1、June 2012 Translation by DIN-Sprachendienst.English price group 16No part of this translation may be reproduced without prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen).ICS 1
2、3.040.99; 07.060!$|e“1896691www.din.deDDIN ISO 28902-1Air quality Environmental meteorology Part 1: Ground-based remote sensing of visual range by lidar(ISO 28902-1:2012)English translation of DIN ISO 28902-1:2012-06Luftqualitt Umweltmeteorologie Teil 1: Bodengebundene Fernmessung der Sichtweite mit
3、 Lidar (ISO 28902-1:2012)Englische bersetzung von DIN ISO 28902-1:2012-06Qualit de lair Mtorologie de lenvironnement Partie 1: Tldtection de la porte visuelle par lidar base sur le sol (ISO 28902-1:2012)Traduction anglaise de DIN ISO 28902-1:2012-06www.beuth.deIn case of doubt, the German-language o
4、riginal shall be considered authoritative.Document comprises 36 pages06.12This standard has been included in the VDI/DIN Handbooks on air quality, Volume 1b and Volume 5. Contents Page National foreword . 3 National Annex NA (informative) Bibliography . 4 Foreword . 5 Introduction . 5 1 Scope . 7 2
5、Normative references 7 3 Terms and definitions 8 4 Symbols and abbreviated terms . 10 4.1 Symbols 10 4.2 Abbreviated terms 12 5 Fundamentals of visual-range lidar 12 5.1 General 12 5.2 Concept of visual-range lidar measurements . 15 6 Requirements . 18 6.1 Measurement variables . 18 6.2 Target varia
6、bles 18 6.3 Specifications and minimum requirements of performance characteristics 18 7 Measurement planning and site requirements . 23 8 Measurement procedure . 24 8.1 General 24 8.2 Maintenance and operational test 24 8.3 Applications and measurement procedure . 24 9 Signal evaluation 26 9.1 Klett
7、-Fernald algorithm 26 9.2 Evaluation range 27 9.3 Uncertainty 27 10 Interferences . 28 Annex A (informative) Alternative data evaluation 29 Annex B (informative) Calibration by the manufacturer . 32 Annex C (informative) Further applications . 34 Bibliography 35 2DIN ISO 28902-1:2012-06 A comma is u
8、sed as the decimal marker. National foreword This standard has been prepared by Technical Committee ISO/TC 146 “Air quality”, Subcommittee SC 5 “Meteorology”, Working Group WG 6 “Lidar” in collaboration with the World Meteorological Organization (WMO), (Secretariat: DIN, Germany). The responsible Ge
9、rman body involved in its preparation was the Kommission Reinhaltung der Luft (KRdL) im VDI und DIN Normenausschuss, (Commission on Air Pollution Prevention of VDI and DIN Standards Committee), Section 2 Umweltmeteorologie, Working Group Bodengebundene Fernmessung meteorolo-gischer Gren. The method
10、specified in this standard is based on VDI 3786 Part 15 (see also Bibliography in the national Annex NA). The DIN Standard corresponding to the International Standard referred to in this document is as follows: IEC 60825-1 DIN EN 60825-1 Attention is drawn to the possibility that some of the element
11、s of this document may be the subject of patent rights. DIN shall not be held responsible for identifying any or all such patent rights. DIN ISO 28902 consists of the following part, under the general title Air quality Environmental meteorology: Part 1: Ground-based remote sensing of visual range by
12、 lidar The following part is under preparation: Part 2: Ground-based remote sensing by Doppler wind lidar 3DIN ISO 28902-1:2012-06 National Annex NA (informative) Bibliography DIN EN 15483, Ambient air quality Atmospheric measurements near ground with FTIR spectroscopy DIN EN 16253, Air quality Atmo
13、spheric measurements near ground with Differential Optical Absorption Spectroscopy (DOAS) Ambient air and diffuse emission measurements DIN EN 60825-1 (VDE 0837-1), Safety of laser products Part 1: Equipment classification and requirements VDI 3786 Part 11, Environmental meteorology Determination of
14、 the vertical wind profile by Doppler SODAR systems VDI 3786 Part 14, Environmental meteorology Ground-based remote sensing of the wind vector Doppler wind LIDAR VDI 3786 Part 15, Environmental meteorology Ground-based remote sensing of visual range Visual-range lidar VDI 3786 Part 17, Environmental
15、 meteorology Ground-based remote sensing of the wind vector Wind profiler radar VDI 3786 Part 18, Environmental meteorology Ground-based remote sensing of temperature Radio-acoustic sounding systems (RASS) VDI 4202 Part 2, Minimum requirements for suitability tests of ambient air quality measuring s
16、ystems Optical remote sensing systems for the measurement of gaseous pollutants VDI 4210 Part 1, Remote sensing Atmospheric measurements with LIDAR Measuring gaseous air pollution with DAS LIDAR VDI 4212 Part 1, Remote sensing Atmospheric measurements near ground with DOAS Gaseous emissions and ambi
17、ent air measurements Fundamentals The following standards are under preparation: VDI 3786 Part 19, Ground-based remote sensing of meteorological variables Backscatter lidar VDI 3786 Part 20, Environmental meteorology Ground-based remote sensing of precipitation Weather surveillance radar 4DIN ISO 28
18、902-1:2012-06 Foreword,62 WKH,QWHUQDWLRQDO2UJDQLDWLRQIRU6WDQGDUGLDWLRQ LVDZRUOGZLGHIHGHUDWLRQRIQDWLRQDOVWDQGDUGVERGLHV ,62PHPEHUERGLHV 7KHZRUNRISUHSDULQJ,QWHUQDWLRQDO6WDQGDUGVLVQRUPDOOFDUULHGRXWWKURXJK,62WHFKQLFDOFRPPLWWHHV(DFKPHPEHUERGLQWHUHVWHGLQDVXEMHFWIRUZKLFKDWHFKQLFDOFRPPLWWHHKDVEHHQHVWDEOLVKH
19、GKDVWKHULJKWWREHUHSUHVHQWHGRQWKDWFRPPLWWHH,QWHUQDWLRQDORUJDQLDWLRQVJRYHUQPHQWDODQGQRQJRYHUQPHQWDOLQOLDLVRQZLWK,62DOVRWDNHSDUWLQWKHZR UN,62FROODERUDWHVFORVHOZLWKWKH,QWHUQDWLRQDO(OHFWURWHFKQLFDO$03/( 7KHWLPHUHVROXWLRQRIFRQVHFXWLYHHWLQFWLRQFRHIFLHQ WSUROHVRUFDOFXODWHGYDOXHVRIWKHPHWHRURORJLFDOoptical ra
20、nge (MOR) or vertical optical range (VOR).3.13range resolutionHTXLSPHQWUHODWHGYDULDEOHGHVFULELQJWKHVKRUWHVWUDQJHLQWHUYDOIURPZKLFKLQGHSHQGHQWVLJQDOLQIRUPDWLRQcan be obtained9DIN ISO 28902-1:2012-06 3.14effective range resolutionapplication-related variable describing an integrated range interval for
21、which the target variable is delivered ZLWKDGHQHGXQFHUWDLQW(;$03/( 7KHUDQJHUHVROXWLRQRIFRQVHFXWLYHHWLQFWLRQFRHIFLHQWSUROHVRUFDOFXODWHGYDOXHVRIWKHPHWHRURORJLFDOoptical range (MOR) or vertical optical range (VOR).3.15fogUHGXFWLRQRIYLVLELOLWFDXVHGEKGURPHWHRUVDWDPHWHRURORJLFDORS LFDOUDQJHVMOR 1 km and r
22、elative KXPLGLWQHDU3.16mistUHGXFWLRQRIYLVLELOLWFDXVHGEKGURPHWHRUVZLWKDUHODWLYH KXPLGLWtRUGHZSRLQWGLIIHUHQFHV d.IRUa meteorological optical range VMORt 1 km:021:022:026127( 7KHGHQLWLRQRIDQXSSHUOLPLWRINPLVJLYHQE,$03/( )LJXUHVKRZVVFKHPDWLFDOOWKHVLWXDWLRQGXULQJDODQ GLQJDSSURDFKDWDQDLUSRUW$OLJKWWUDQVPLVV
23、RPHWHUat the ground (baseline xL) measures VMOR(TXDWLRQ XQGHUWKHDVVXPSWLRQRIDKRULRQWDOOKRPRJHQH RXVHWLQFWLRQFRHIFLHQWD1,QWKLVHDPSOHVMORis larger than the baseline xL. VSORUHTXLUHVLQWHJUDWLRQRYHUWKHYHUWLFDOOVWUDWLHGHWLQFWLRQFRHIFLHQW(TXDWLRQ 8QGHUORZVWUDWXV D2! D1D3 FRQGLWLRQVDSLORWDWKHLJKWhWKXVVHHVW
24、KHJURXQGDWa steeper angle (VSOR1) than in ground fog (D1! D2D3VSOR2) conditions.7KHVFKHPHLOOXVWUDWHVWKDWVODQWRSWLFDOUDQJHVSORLVGHQHGDVDGLVWDQFHDWJURXQGOHYHODQGFDQEHTXLWHGLIIHUHQWIURPWKHPHWHRURORJLFDORSWLFDOUDQJHVMOR.)LJXUH6FKHPDWLFUHSUHVHQWDWLRQRIDVLWXDWLRQZLWKKRULRQ WDOOKRPRJHQHRXVYLVLELOLWLHVFRUUH
25、VSRQGLQJWRHWLQFWLRQFRHIFLHQWVDDD123, 17DIN ISO 28902-1:2012-06 9LVXDOUDQJHGHWHUPLQDWLRQZLWKOLGDU.RVFKPLHGHUVWKHRUDVVXPHVYLVLEOHOLJKW+RZHYHUOLGDUPHWKRGVIRUYLVXDOUDQJHGHWHUPLQDWLRQRSHUDWHIURPWKHQHDU89UHJLRQXSWRWKHQHDU,5UHJLRQDWZDYHOHQJWKVIURPQPXSWRQP2).7KHDSSOLFDWLRQRI.RVFKPLHGHUVWKHRUWROLGDUPHWKRGVLV
26、SRVVLEOHLIZDYHOHQJWKLQGHSHQGHQWVFDWWHULQJis assumed. This condition can be met in different meteorological situations if backscatter particles are KRPRJHQRXVLQVKDSHDQGGLDPHWHU HJIRJDQGPLVWRUKDH ,ILQVWHDGWKHUHDUHSDUWLFOHPLWXUHVRULQKRPRJHQHLWLHVGLIIHUHQWWKHRULHVKDYHWREHDSSOLHGEHFDXVHZDYHOHQJWKLQGHSHQG
27、HQFLVQRORQJHUDJLYHQ$FFRUGLQJWR.RVFKPLHGHUVWKHRUWKHDSSOLFDWLRQRIWKLVSDUWRI,62LVWKHUHIRUHUHVWULFWHGEFRQYHQWLRQto VMORd 2 000 m3). This meteorological optical range covers the applications described in 8.3. Examples for applications for VMOR! 2 000 m are given in Annex C.7KHUDQJHUHVROYHGPHDVXUHPHQWRIWK
28、HHWLQFWLRQFRHIFLHQWD with lidar allows the meteorological optical UDQJHWREHGHWHUPLQHGHYHQLQLQKRPRJHQHRXVVWUDWLFDWLRQFRQGLWLRQV7KLVLVWKHHVVHQWLDOGLIIHUHQFHwith 5.2.2 and an advantage of visual-range determination with lidar compared to in-situ methods or point measurement methods or observers.6 Requi
29、rements6.1 Measurement variablesThe measurement variable of a visual-range lidar is the power P(x) backscattered from distance x(TXDWLRQ 6.2 Target variables:LWKWKHGHVFULEHGHYDOXDWLRQPHWKRGLQWKHSDUWLFOHHWLQFWLRQFRHIFLHQW D(x) is obtained from the measured backscatter signal P(x 7KHIROORZLQJSULPDUWDU
30、JHWYDULDEOHVFDQWKHQEHGHWHUPLQHGDORQJWKHRSWLFDOSDWKLIWKHPLQLPXPUHTXLUHPHQWVOLVWHGLQDUHIXOOOHG SDUWLFOHHWLQFWLRQFRHIFLHQW D JUDGLHQWRIWKHSDUWLFOHEDFNVFDWWHUFRHIFLHQWG E/dx PHWHRURORJLFDORSWLFDOUDQJH VMOR VWDQGDUGYLVXDOUDQJH VN YHUWLFDORSWLFDOUDQJH VVOR VODQWRSWLFDOUDQJH VSOR.7KHGHQLWLRQVRIWKHVHSULPDUW
31、DUJHWYDULDEOHVDUHJLYHQLQ$03/( :LWKDQHIIHFWLYHUDQJHUHVROXWLRQRIPDQGDGLJLWDOUHVROXW RQRIELWVVMOR 1 200 m can be GHWHUPLQHGZLWKDQXQFHUWDLQWRI SRLQW$ LIHJODVHUSXOVHVDUHDYHUDJHG$WVMOR PDQHIIHFWLYHUDQJHUHVROXWLRQRIPDQGELWUHVROXWLRQRQHREWDLQVXQFHUWDLQW SRLQW% DWDQELWUHVROXWLRQWKHXQFHUWDLQWLQFUHDVHVWR SRLQW
32、& 6.3.7 Minimum range and maximum range9LVXDOUDQJHOLGDUVVWHPVDOORZDPHDVXUHPHQWLPPHGLDWHOLQIURQWRIWKHPHDVXULQJVVWHPSURYLGHGWKHdata evaluation algorithm allows the treatment of signals from short distances for which O(x) 1 and considers PXOWLSOHVFDWWHULQJHJEGHQVHIRJ,IWKLVFRQGLWLRQLVQRWPHWWKHPLQLPXPUDQ
33、JHxminVKDOOEHVHWDWDdistance for which the overlap function O(x) 1 or at which the backscatter signals are maximum. This is QHFHVVDUWRHQVXUHDFFXUDWHUHVXOWV VHH)LJXUH 7KHPLQLPXPUDQJHRIDYLVXDOUDQJHOLGDUGHSHQGVRQWKHJHRPHWURILWVRSWLFVDQGXVXDOOOLHVEHWZHHQPDQGP$QGDWDHYDOXDWLRQDOJRULWKPWKDWGHSHQGV22DIN ISO 28902-1:2012-06 on signals from distances with overlap function O(x) LV