1、 REVISIONSLTR DESCRIPTION DATE APPROVEDA Correct lead finishes on last page. - CFS 05-12-02 Thomas M. Hess B Correct the device package top-side markings on last page. - CFS 07-07-10 Thomas M. Hess C Add device type 07. - RO 10-11-02 Charles F. Saffle CURRENT DESIGN ACTIVITY CAGE CODE 16236 HAS CHAN
2、GED NAMES TO: DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 Prepared in accordance with ASME Y14.24 Vendor item drawing REV PAGE REV C C C C C C C C C PAGE 18 19 20 21 22 23 24 25 26 REV STATUS OF PAGES REV C C C C C C C C C C C C C C C C C PAGE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 PMIC N/A P
3、REPARED BY RICK OFFICER DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 Original date of drawing YY-MM-DD CHECKED BY TOM HESS TITLE MICROCIRCUIT, LINEAR, HIGH SPEED, LOW POWER, PRECISION, OPERATIONAL AMPLIFIER, MONOLITHIC SILICON 04-11-19 APPROVED BY RAYMOND MONNIN SIZE A CODE IDENT. NO. 16
4、236 DWG NO. V62/04755 REV C PAGE 1 OF 26 AMSC N/A 5962-V078-10 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 2 1. SCOPE 1.1 Scope. This drawing
5、documents the general requirements of a high performance high speed, low power, precision, operational amplifier microcircuit, with an operating temperature range of -40C to +125C for device types 01 through 06 and -55C to +125C for device type 07. 1.2 Vendor Item Drawing Administrative Control Numb
6、er. The manufacturers PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation: V62/04755 - 01 X E Drawing Device type Case outline Lead finish number (See 1.2.1) (See 1.2.2) (See 1.2.3) 1.2.1 De
7、vice type(s). VIOat 25C Device type Generic Circuit function maximum 01 TLE2021AQ High speed, low power, precision, operational amplifier 200 V 02 TLE2021Q High speed, low power, precision, operational amplifier 500 V 03 TLE2022AQ High speed, low power, precision, operational amplifier 300 V 04 TLE2
8、022Q High speed, low power, precision, operational amplifier 500 V 05 TLE2024AQ High speed, low power, precision, operational amplifier 750 V 06 TLE2024Q High speed, low power, precision, operational amplifier 1000 V 07 TLE2021M High speed, low power, precision, operational amplifier 500 V 1.2.2 Cas
9、e outline(s). The case outline(s) are as specified herein. Outline letter Number of pins JEDEC PUB 95 Package style X 8 MS-012AA Plastic small outline Y 16 MS-013AA Plastic small outline1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device man
10、ufacturer: Finish designator Material A Hot solder dip B Tin-lead plateC Gold plateD PalladiumE Gold flash palladium Z Other Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DW
11、G NO. V62/04755 REV C PAGE 3 1.3 Absolute maximum ratings. 1/ Supply voltage (VCC+) . +20 V 2/ Supply voltage (VCC-) -20 V 2/ Differential input voltage (VID) 0.6 V 3/ Input voltage range (VI) (any input) VCC2/ Input current (II) (each input) 1 mA Output current (IO) (each output): Device types 01,
12、02, 07 20 mA Device types 03, 04 30 mA Device types 05, 06 40 mA Total current into VCC+80 mA Total current into VCC-. 80 mA Duration of short circuit current at (or below) 25C Unlimited 4/ Operating virtual junction temperature range (TJ) +150C Package thermal impedance (RJA): Case outline X 97C/W
13、5/ Case outline Y 57C/W 5/ Storage temperature range (TSTG) -65C to +150C Lead temperature 1.6 mm (1/16 inch) from case for 3 seconds (case X only) . +300C 1.4 Recommended operating conditions. 6/ Supply voltage range (VCC) . 2 V to 20 V Input voltage range (VIC): VCC= 5 V . 0 V to 3.2 V VCC= 15 V .
14、 -15 V to 13.2 V Operating free-air temperature range (TA) : Device types 01, 02, 03, 04, 05, 06 -40C to +125C Device type 07 . -55C to +125C 1/ Stresses beyond those listed under “absolute maximum rating” may cause permanent damage to the device. These are stress ratings only, and functional operat
15、ion of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2/ All voltages values, expect differential voltages, are with respect
16、to the midpoint between VCC+, and VCC-3/ Differential voltages are at IN+ with respect to IN-. Excessive current flows if a differential input voltage in excess of approximately 600 mV is applied between the inputs unless some limiting resistance is used. 4/ The output may be shorted to either suppl
17、y. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. 5/ Maximum power dissipation is a function of TJ(max), JA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD= (TJ(max) TA)/ JA. Selecting the
18、maximum of 150C can affect reliability. 6/ Use of this product beyond the manufacturers design rules or stated parameters is done at the users risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits. Provided by IHSNot for ResaleNo
19、reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 4 2. APPLICABLE DOCUMENTS JEDEC PUB 95 Registered and Standard Outlines for Semiconductor Devices (Applications for copies should
20、be addressed to the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington, VA 22201-3834 or online at http:/www.jedec.org) 3. REQUIREMENTS 3.1 Marking. Parts shall be permanently and legibly marked with the manufacturers part number as shown in 6.3 herein and as follows: A. Manufacturers
21、name, CAGE code, or logo B. Pin 1 identifier C. ESDS identification (optional) 3.2 Unit container. The unit container shall be marked with the manufacturers part number and with items A and C (if applicable) above. 3.3 Electrical characteristics. The maximum and recommended operating conditions and
22、electrical performance characteristics are as specified in 1.3, 1.4, and table I herein. 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein. 3.5 Diagrams. 3.5.1 Case outlines. The case outlines shall be as shown in 1.2.2 and fi
23、gure 1. 3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2. 3.5.3 Test circuits. The test circuits shall be as shown in figure 3. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS
24、, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 5 TABLE I. Electrical performance characteristics. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Unit Min Max Input offset voltage VIOVCC= 5 V, VIC= 0, RS= 50 +25C 01 400 V -40C to +125C 550 +25C 02 600 -40C to +125C 800 +
25、25C 07 600 -55C to +125C 850 Temperature coefficient of input offset voltage VIOVCC= 5 V, VIC= 0, RS= 50 -40C to +125C 01, 02 2 typical V/C -55C to +125C 07 2 typical Input offset 2/ voltage long term drift VCC= 5 V, VIC= 0, RS= 50 -40C to +125C 01, 02 0.005 typical V/mo -55C to +125C 07 0.005 typic
26、al Input offset current IIOVCC= 5 V, VIC= 0, RS= 50 +25C 01,02,07 6 nA -40C to +125C 01,02 10 -55C to +125C 07 10 Input bias current IIBVCC= 5 V, VIC= 0, RS= 50 +25C 01,02,07 70 nA -40C to +125C 01,02 90 -55C to +125C 07 90 Common mode input voltage range VICRVCC= 5 V, RS= 50 +25C 01,02,07 0 to 3.5
27、V -40C to +125C 01,02 0 to 3.2 -55C to +125C 07 0 to 3.2 High level output voltage VOHVCC= 5 V, RL= 10 k +25C 01,02,07 4 V -40C to +125C 01,02 3.8 -55C to +125C 07 3.8 See footnotes at end of table. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DEF
28、ENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 6 TABLE I. Electrical performance characteristics Continued. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Unit Min Max Low level output voltage VOLVCC= 5 V, RL= 10 k +25C 01,02,07 0.8
29、V -40C to +125C 01,02 0.95 -55C to +125C 07 0.95 Large signal differential voltage amplification AVDVO= 1.4 V to 4 V, RL= 10 k, +25C 01,02,07 0.3 V/V VCC= 5 V -40C to +125C 01,02 0.1 -55C to +125C 07 0.1 Common mode rejection ratio CMRR VIC= VICRmin, RS= 50 , +25C 01,02,07 85 dB VCC= 5 V -40C to +12
30、5C 01,02 80 -55C to +125C 07 80 Supply voltage rejection ratio kSVRVCC= 5 V to 30 V +25C 01,02,07 105 dB (VCC/ VIO) -40C to +125C 01,02 100 -55C to +125C 07 100 Supply current ICCVCC= 5 V, VO= 2.5 V, no load +25C 01,02,07 300 A -40C to +125C 01,02 300 -55C to +125C 07 300 Supply current change over
31、operating temperature range ICCVCC= 5 V, VO= 2.5 V, no load -40C to +125C 01,02 9 typical A -55C to +125C 07 9 typical Slew rate at unity gain SR VCC= 5 V, VO= 1 V to 3 V, see figure 3 +25C 01,02,07 0.5 typical V/s See footnotes at end of table. Provided by IHSNot for ResaleNo reproduction or networ
32、king permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 7 TABLE I. Electrical performance characteristics Continued. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Unit Min Max Equivalent input n
33、oise voltage VnVCC= 5 V, f = 10 Hz +25C 01,02,07 21 typical nV/Hz (see figure 3) VCC= 5 V, f = 1 kHz 17 typical Peak-to-peak equivalent input noise voltage VN(PP) VCC= 5 V, f = 0.1 Hz to 1 Hz +25C 01,02,07 0.16 typical V VCC= 5 V, f = 0.1 Hz to 10 Hz 0.47 typical Equivalent input noise current InVCC
34、= 5 V +25C 01,02,07 0.9 typical pA/Hz Unity gain bandwidth B1VCC= 5 V, see figure 3 +25C 01,02,07 1.2 typical MHz Phase margin at unity gain m VCC= 5 V, see figure 3 +25C 01,02,07 42 typical See footnotes at end of table. Provided by IHSNot for ResaleNo reproduction or networking permitted without l
35、icense from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 8 TABLE I. Electrical performance characteristics Continued. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Unit Min Max Input offset voltage VIOVCC= 15 V, VIC= 0,
36、 RS= 50 +25C 01 300 V -40C to +125C 450 +25C 02 500 -40C to +125C 700 +25C 07 500 -55C to +125C 800 Temperature coefficient of input offset voltage VIOVCC= 15 V, VIC= 0, RS= 50 -40C to +125C 01, 02 2 typical V/C -55C to +125C 07 2 typical Input offset 2/ voltage long term drift VCC= 15 V, VIC= 0, RS
37、= 50 -40C to +125C 01, 02 0.006 typical V/mo -55C to +125C 07 0.006 typical Input offset current IIOVCC= 15 V, VIC= 0, RS= 50 +25C 01,02,07 6 nA -40C to +125C 01,02 10 -55C to +125C 07 10 Input bias current IIBVCC= 15 V, VIC= 0, RS= 50 +25C 01,02,07 70 nA -40C to +125C 01,02 90 -55C to +125C 07 90 C
38、ommon mode input voltage range VICRVCC= 15 V, RS= 50 +25C 01,02,07 -15 to 13.5 V -40C to +125C 01,02 -15 to 13.5 -55C to +125C 07 -15 to 13.5 See footnotes at end of table. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMB
39、US COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 9 TABLE I. Electrical performance characteristics Continued. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Unit Min Max Maximum positive peak output voltage swing VOM+VCC= 15 V, RL= 10 k +25C 01,02,07 14 V -40C
40、to +125C 01,02 13.8 -55C to +125C 07 13.8 Maximum negative peak output voltage swing VOM-VCC= 15 V, RL= 10 k +25C 01,02,07 -13.7 V -40C to +125C 01,02 -13.6 -55C to +125C 07 -13.6 Large signal differential voltage amplification AVDVO= 0 V, RL= 10 k +25C 01,02,07 1 V/V VCC= 15 V -40C to +125C 01,02 0
41、.5 -55C to +125C 07 0.5 Common mode rejection ratio CMRR VIC= VICRmin, RS= 50 , +25C 01,02,07 100 dB VCC= 15 V -40C to +125C 01,02 96 -55C to +125C 07 96 Supply voltage rejection ratio kSVRVCC= 2.5 V to 15 V +25C 01,02,07 105 dB (VCC/ VIO) -40C to +125C 01,02 100 -55C to +125C 07 100 Supply current
42、ICCVCC= 15 V, VO= 0 V, no load +25C 01,02,07 350 A -40C to +125C 01,02 350 -55C to +125C 07 350 Supply current change over operating temperature range ICCVCC= 15 V, VO= 0 V, no load -40C to +125C 01,02 10 typical A -55C to +125C 07 10 typical See footnotes at end of table. Provided by IHSNot for Res
43、aleNo reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 10 TABLE I. Electrical performance characteristics Continued. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Un
44、it Min Max Slew rate at unity gain SR VCC= 15 V, VO= 10 V, +25C 01,02,07 0.45 V/s see figure 3 -40C to +125C 01,02 0.4 -55C to +125C 07 0.4 Equivalent input noise voltage VnVCC= 15 V, f = 10 Hz +25C 01,02,07 19 typical nV/Hz (see figure 3) VCC= 15 V, f = 1 kHz 15 typical Peak-to-peak equivalent inpu
45、t noise voltage VN(PP) VCC= 15 V, f = 0.1 Hz to 1 Hz +25C 01,02,07 0.16 typical V VCC= 15 V, f = 0.1 Hz to 10 Hz 0.47 typical Equivalent input noise current InVCC= 15 V +25C 01,02,07 0.09 typical pA/Hz Unity gain bandwidth B1VCC= 15 V, see figure 3 +25C 01,02,07 2 typical MHz Phase margin at unity g
46、ain m VCC= 15 V, see figure 3 +25C 01,02,07 46 typical See footnotes at end of table. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-DEFENSE SUPPLY CENTER, COLUMBUS COLUMBUS, OHIO SIZE A CODE IDENT NO. 16236 DWG NO. V62/04755 REV C PAGE 11 TABLE I.
47、Electrical performance characteristics Continued. 1/ Test Symbol ConditionsTemperature, TA Device type Limits Unit Min Max Input offset voltage VIOVCC= 5 V, VIC= 0, RS= 50 +25C 03 400 V -40C to +125C 550 +25C 04 600 -40C to +125C 800 Temperature coefficient of input offset voltage VIOVCC= 5 V, VIC= 0, RS= 50 -40C to +125C 03, 04 2 typical V/C Input offset 2/ volta