DLA SMD-5962-06259-2006 MICROCIRCUIT HYBRID LINEAR ANALOG TO DIGITAL CONVERTER 8-BIT《8比特模拟数字转变器线性混合微型电路》.pdf

上传人:unhappyhay135 文档编号:698374 上传时间:2019-01-02 格式:PDF 页数:13 大小:87.51KB
下载 相关 举报
DLA SMD-5962-06259-2006 MICROCIRCUIT HYBRID LINEAR ANALOG TO DIGITAL CONVERTER 8-BIT《8比特模拟数字转变器线性混合微型电路》.pdf_第1页
第1页 / 共13页
DLA SMD-5962-06259-2006 MICROCIRCUIT HYBRID LINEAR ANALOG TO DIGITAL CONVERTER 8-BIT《8比特模拟数字转变器线性混合微型电路》.pdf_第2页
第2页 / 共13页
DLA SMD-5962-06259-2006 MICROCIRCUIT HYBRID LINEAR ANALOG TO DIGITAL CONVERTER 8-BIT《8比特模拟数字转变器线性混合微型电路》.pdf_第3页
第3页 / 共13页
DLA SMD-5962-06259-2006 MICROCIRCUIT HYBRID LINEAR ANALOG TO DIGITAL CONVERTER 8-BIT《8比特模拟数字转变器线性混合微型电路》.pdf_第4页
第4页 / 共13页
DLA SMD-5962-06259-2006 MICROCIRCUIT HYBRID LINEAR ANALOG TO DIGITAL CONVERTER 8-BIT《8比特模拟数字转变器线性混合微型电路》.pdf_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、 REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED REV SHEET REV SHEET REV STATUS REV OF SHEETS SHEET 1 2 3 4 5 6 7 8 9 10 11 12 PMIC N/A PREPARED BY Steve L. Duncan DEFENSE SUPPLY CENTER COLUMBUS STANDARD MICROCIRCUIT DRAWING CHECKED BY Greg Cecil COLUMBUS, OHIO 43218-3990 http:/www.dscc.dla.mil/

2、THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS APPROVED BY Raymond Monnin MICROCIRCUIT, HYBRID, LINEAR, ANALOG TO DIGITAL CONVERTER, 8-BIT AND AGENCIES OF THE DEPARTMENT OF DEFENSE DRAWING APPROVAL DATE 06-09-18 AMSC N/A REVISION LEVEL SIZE A CAGE CODE 67268 5962-06259 SHEET 1 OF 12 DSCC FORM

3、2233 APR 97 5962-E636-06 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 2 DSCC FORM 2234 APR 97 1. SCOPE 1.1 Scope. This dr

4、awing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in

5、the PIN. 1.2 PIN. The PIN shall be as shown in the following example: 5962 - 06259 01 H X X Federal RHA Device Device Case Lead stock class designator type class outline finish designator (see 1.2.1) (see 1.2.2) designator (see 1.2.4) (see 1.2.5) / (see 1.2.3) / Drawing number 1.2.1 Radiation hardne

6、ss assurance (RHA) designator. RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. 1.2.2 Device type(s). The device type(s) identify the circuit function as follows: Device type Generic n

7、umber Circuit function 01 MN5130 A/D converter, 8-bit, 0 to -10 V input range 02 MN5131 A/D converter, 8-bit, 5 V input range 03 MN5132 A/D converter, 8-bit, 10 V input range 04 MN5133 A/D converter, 8-bit, 0 to +10 V input range 1.2.3 Device class designator. This device class designator shall be a

8、 single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows: Device class Device performance

9、documentation K Highest reliability class available. This level is intended for use in space applications. H Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required. G Reduced testing version of the standard military

10、 quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C and D). E Designates devices which

11、are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affe

12、ct system performance. D Manufacturer specified quality class. Quality level is defined by the manufacturers internal, QML certified flow. This product may have a limited temperature range. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MIC

13、ROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 3 DSCC FORM 2234 APR 97 1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows: Outline letter Descriptive designator Terminals Package style X See f

14、igure 1 18 Dual-in-line 1.2.5 Lead finish. The lead finish shall be as specified in MIL-PRF-38534. 1.3 Absolute maximum ratings. 1/ Positive supply voltage (VCC) . +18 V Negative supply voltage (VEE) -18 V Logic supply voltage range (VDD) . -0.5 V to +7 V Analog input. 15 V Digital input voltage ran

15、ge . -0.5 V to +5.5 V Maximum junction temperature +150C Thermal resistance: Junction-to-case (JC). +12C/W Junction-to-ambient (JA) +44C/W 1.4 Recommended operating conditions. Positive supply voltage range (VCC). +14.55 V dc to +15.45 V dc Negative supply voltage range (VEE) . -15.45 V dc to -14.55

16、 V dc Logic supply voltage range (VDD). +4.75 V to +5.25 V Case operating temperature range (TC) -55C to +125C 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified her

17、ein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. DEPARTMENT OF DEFENSE SPECIFICATIONS MIL-PRF-38534 - Hybrid Microcircuits, General Specification for. DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-

18、STD-1835 - Interface Standard Electronic Component Case Outlines. DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of these documents are available online at http:/assist.daps.dla.mil/quicksearch/ or http:/a

19、ssist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing

20、in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. _ 1/ Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. Pro

21、vided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 4 DSCC FORM 2234 APR 97 3. REQUIREMENTS 3.1 Item requirements. The individual i

22、tem performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 shall include the performance of all tests herein or as designated in the device manufacturers Quality Management (QM) plan or as designated for the applicable d

23、evice class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of

24、 the device for the applicable device class. 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein. 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1. 3.2.2

25、 Terminal connections. The terminal connections shall be as specified on figure 2. 3.2.3 Digital ouptut codes. The digital output shall be as specified on figure 3. 3.2.4 Block diagram(s). The block diagram(s) shall be as specified on figure 4. 3.3 Electrical performance characteristics. Unless othe

26、rwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range. 3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table II. The electrical tests fo

27、r each subgroup are defined in table I. 3.5 Marking of device(s). Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturers vendor similar PIN may also be marked. 3.6 Data. In addition to the general p

28、erformance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all

29、parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request. 3.7 Certificate of compliance. A certificate of compliance shall be

30、 required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturers product meets the performance requirements of MIL-PRF-38534 and herein. 3.8 Certificate of conformance. A certificate of conformanc

31、e as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing. 4. VERIFICATION 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturers Quality Management (QM) plan

32、. The modification in the QM plan shall not affect the form, fit, or function as described herein. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-399

33、0 REVISION LEVEL SHEET 5 DSCC FORM 2234 APR 97 TABLE I. Electrical performance characteristics. Limits Test Symbol Conditions -55C TC+125C unless otherwise specified Group A subgroups Device type Min Max Unit Power supply current from VCCICCVCC= +15 V, VEE= -15 V, output code = 00000000 and 11111111

34、 1,2,3 All 16 mA Power supply current from VEEIEEVEE= -15 V, VCC= +15 V, output code = 00000000 and 11111111 1,2,3 All -18 mA Power supply current from VDDIDDVDD= +5 V, output code = 00000000 and 11111111 1,2,3 All 100 mA Start convert digital input high current VIN= “Logic 1“ = 2.4 V 1,2,3 All 80 A

35、 Start convert digital input low current VIN= “Logic 0“ = 0.4 V 1,2,3 All -1.6 mA Clock input digital input high current VIN= “Logic 1“ = 2.4 V 1,2,3 All 40 A Clock input digital input low current VIN= “Logic 0“ = 0.4 V 1,2,3 All -1.6 mA Digital input low voltage VIL 1,2,3 All 0.8 V Digital input hi

36、gh voltage VIH 1,2,3 All 2.0 V Digital output low voltage VOL IOL= -8 mA 1,2,3 All 0.4 V Digital output high voltage VOH IOH= +440 A 1,2,3 All 2.4 V Linearity error LE 4,5,6 All -0.5 +0.5 LSB 4 -1 +1 Accuracy error AE 5,6 All -2 +2 LSB Zero error ZE Analog input = 0 V 4,5,6 All -1 +1 LSB Conversion

37、time tC 9,10,11 All 2.5 s +PSRR VCC= +14.55 V to +15.45 V 1,2,3 All 0.08 Power supply rejection ratio -PSRR VEE= -15.45 V to -14.55 V 1,2,3 All 0.03 %FSR/%PS Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06

38、259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 6 DSCC FORM 2234 APR 97 FIGURE 1. Case outline. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER CO

39、LUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 7 DSCC FORM 2234 APR 97 Millimeters Inches Symbol Min Max Min Max A 3.05 4.32 .120 .170 b 0.41 0.51 .016 .020 C 0.23 0.30 .009 .012 D 24.82 26.09 .977 1.027 D1 20.19 20.45 .795 .805 e 2.41 2.67 .095 .105 eA 7.49 7.75 .295 .305 e1 2.03 2.79 .080 .

40、110 E 12.19 13.21 .480 .520 L 5.08 5.84 .200 .230 Q 0.38 0.89 .015 .035 S 1.91 2.67 .075 .105 NOTE: The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-

41、pound units, the inch- pound units shall rule. FIGURE 1. Case outline - Continued. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL

42、 SHEET 8 DSCC FORM 2234 APR 97 Device Type All Case outline X Terminal number Pin Function 1 Positive supply (VCC) 2 Analog input 3 Bit 8 (LSB) 4 Bit 7 5 Bit 6 6 Bit 5 7 Status (E.O.C) 8 Start convert 9 Ground 10 Clock input 11 Serial output 12 +5 V supply (VDD) 13 Bit 4 14 Bit 3 15 Bit 2 16 Bit 1 (

43、MSB) 17 Ground 18 Negative supply (VEE) FIGURE 2. Terminal connections. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 9 DS

44、CC FORM 2234 APR 97 Analog input Digital output Device type 01 0 to -10 V Device type 02 5 V Device type 03 10 V Device type 04 0 to +10 V MSB LSB 0.000 V -0.039 V +5.000 V +4.961 V +10.000 V +9.922 V +10.000 V +9.961 V 1111 1111 1111 111 See NOTE -4.961 V -5. 000 V -5.039 V +0.039 V 0.000 V -0.039

45、V +0.078 V 0.000 V -0.078 V +5.039 V +5.000 V +4.961 V 1000 000 See NOTE See NOTE 0111 111 See NOTE -9.961 V -10.000 V -4.961 V -5.000 V -9.922 V -10.000 V +0.039 V 0.000 V 0000 000 See NOTE 0000 0000 NOTE: Voltages given are the theorectical values for the transitions indicated. Ideally with the co

46、nverter continously converting, the output bits indicated as will change “1“ to “0“ or “0“ to “1“ as the input voltage passes through the level indicated. Example: For device type 03 (10 V analog input range) the transisition from digital output 0000 0000 to 0000 0001(or vice versa) will ideally occ

47、ur at an input voltage of -9.922. Subsequently, any input voltage more negative than -9.922 volts will give a digital output of all “0s“. The transistion from digital output 0111 1111 to 1000 0000 will ideally occur at an input of zero volts, and the 1111 1110 to 1111 1111 transistion should occur a

48、t +9.922 volts. An input greater than +9.922 volts will give all “1s“. FIGURE 3. Digital output code. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING SIZE A 5962-06259 DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 REVISION LEVEL SHEET 10 DSCC FORM

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1