DLA SMD-5962-96584 REV C-2012 MICROCIRCUIT DIGITAL RADIATION HARDENED ADVANCED CMOS 4-BIT BINARY FULL ADDER WITH FAST CARRY MONOLITHIC SILICON.pdf

上传人:unhappyhay135 文档编号:700938 上传时间:2019-01-01 格式:PDF 页数:24 大小:310KB
下载 相关 举报
DLA SMD-5962-96584 REV C-2012 MICROCIRCUIT DIGITAL RADIATION HARDENED ADVANCED CMOS 4-BIT BINARY FULL ADDER WITH FAST CARRY MONOLITHIC SILICON.pdf_第1页
第1页 / 共24页
DLA SMD-5962-96584 REV C-2012 MICROCIRCUIT DIGITAL RADIATION HARDENED ADVANCED CMOS 4-BIT BINARY FULL ADDER WITH FAST CARRY MONOLITHIC SILICON.pdf_第2页
第2页 / 共24页
DLA SMD-5962-96584 REV C-2012 MICROCIRCUIT DIGITAL RADIATION HARDENED ADVANCED CMOS 4-BIT BINARY FULL ADDER WITH FAST CARRY MONOLITHIC SILICON.pdf_第3页
第3页 / 共24页
DLA SMD-5962-96584 REV C-2012 MICROCIRCUIT DIGITAL RADIATION HARDENED ADVANCED CMOS 4-BIT BINARY FULL ADDER WITH FAST CARRY MONOLITHIC SILICON.pdf_第4页
第4页 / 共24页
DLA SMD-5962-96584 REV C-2012 MICROCIRCUIT DIGITAL RADIATION HARDENED ADVANCED CMOS 4-BIT BINARY FULL ADDER WITH FAST CARRY MONOLITHIC SILICON.pdf_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、 REVISIONS LTR DESCRIPTION DATE (YR-MO-DA) APPROVED A Add limit for linear energy threshold (LET) with no latch-up in section 1.5. Update the boilerplate to the requirements of MIL-PRF-38535. Editorial changes throughout. - TVN 06-03-20 Thomas M. Hess B Add new device types 02 and 03. Add die requir

2、ements in appendix A. Update radiation features in section 1.5 and SEP table IB. - MAA. 10-12-07 Thomas M. Hess C Add equivalent test circuit and footnote 5 in figure 4. Delete class M requirements. - MAA 12-07-24 Thomas M. Hess REV SHEET REV C C C C C C C C C SHEET 15 16 17 18 19 20 21 22 23 REV ST

3、ATUS OF SHEETS REV C C C C C C C C C C C C C C SHEET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PMIC N/A PREPARED BY Joseph A. Kerby DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http:/www.landandmaritime.dla.mil STANDARD MICROCIRCUIT DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES

4、 OF THE DEPARTMENT OF DEFENSE AMSC N/A CHECKED BY Monica L. Poelking APPROVED BY Monica L. Poelking MICROCIRCUIT, DIGITAL, RADIATION HARDENED, ADVANCED CMOS, 4-BIT BINARY FULL ADDER WITH FAST CARRY, MONOLITHIC SILICON DRAWING APPROVAL DATE 96-11-18 REVISION LEVEL C SIZE A CAGE CODE 67268 5962-96584

5、SHEET 1 OF 23 DSCC FORM 2233 APR 97 5962-E290-12Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-96584 REVISION LEVEL C SHEET 2 DSCC FORM 2234 APR 97 1. SCOPE 1.

6、1 Scope. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of

7、Radiation Hardness Assurance (RHA) levels is reflected in the PIN. 1.2 PIN. The PIN is as shown in the following example: 5962 H 96584 01 V X A Federal RHA Device Device Case Lead stock class designator type class outline finish designator (see 1.2.1) (see 1.2.2) designator (see 1.2.4) (see 1.2.5) /

8、 (see 1.2.3) / Drawing number 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. 1.2.2 Device type(s). The device type(s) identify the circuit function

9、as follows: Device type Generic number Circuit function 01 54ACS283 Radiation hardened, 4-bit binary full adder with fast carry 02 54ACS283E Enhanced, radiation hardened, 4-bit binary full adder with fast carry 03 54ACS283E Enhanced, radiation hardened, 4-bit binary full adder with fast carry 1.2.3

10、Device class designator. The device class designator is a single letter identifying the product assurance level as follows: Device class Device requirements documentation Q or V Certification and qualification to MIL-PRF-38535 1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1

11、835 and as follows: Outline letter Descriptive designator Terminals Package style E GDIP1-T16 or CDIP2-T16 16 Dual-in-line X CDFP4-F16 16 Flat pack 1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M. Provided

12、 by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-96584 REVISION LEVEL C SHEET 3 DSCC FORM 2234 APR 97 1.3 Absolute maximum ratings. 1/ 2/ 3/ Supply voltage range (VDD) -

13、0.3 V dc to +7.0 V dc DC input voltage range (VIN) -0.3 V dc to VDD + 0.3 V dc DC output voltage range (VOUT) . -0.3 V dc to VDD+ 0.3 V dc DC input current, any one input (IIN). 10 mA Latch-up immunity current (ILU) 150 mA Storage temperature range (TSTG) . -65C to +150C Lead temperature (soldering,

14、 5 seconds) +300C Thermal resistance, junction-to-case (JC): Case outlines E and X (device type 01) . See MIL-STD-1835 Case outline X (device types 02 and 03) . 15C/W Junction temperature (TJ) +175C Maximum package power dissipation (PD): Device type 01 . 1.0 W Device types 02 and 03 . 3.3 W 4/ 1.4

15、Recommended operating conditions. 2/ 3/ Supply voltage range (VDD): Device types 02 and 03 . +3.0 V dc to +5.5 V dc Device type 01 . +4.5 V dc to +5.5 V dc Input voltage range (VIN) +0.0 V dc to VDDOutput voltage range (VOUT). +0.0 V dc to VDDMaximum input rise or fall time at VDD= 4.5 V (tr, tf) 1

16、ns/V 5/ Case operating temperature range (TC) . -55C to +125C 1.5 Radiation features. 6/ Maximum total dose available: Device type 01 (dose rate = 50 300 rads (Si)/s) 1 x 106rad (Si) 7/ Device type 02 (effective dose rate = 1rad (Si)/s) 1 x 106rad (Si) 8/ Device type 03 (dose rate = 50 300 rads (Si)

17、/s) 5 x 105rads (Si) 7/ Single event phenomenon (SEP): Device type 01: no upsets occurs at effective LET (see 4.4.4.4) 80 MeV/(mg/cm2) 9/ no latch-up occurs at effective LET (see 4.4.4.4) 120 MeV/(mg/cm2) 9/ Device types 02 and 03: no upsets occurs at effective LET (see 4.4.4.4) 108 MeV/(mg/cm2) 9/

18、no latch-up occurs at effective LET (see 4.4.4.4) 120 MeV/(mg/cm2) 9/ Dose rate upset (20 ns pulse) (device types 01, 02 and 03) . 1 x 109rads (Si)/s 9/ 10/ Dose rate induced latch-up . None 9/ Dose rate survivability (device types 01, 02 and 03) . 1 x 1012rads (Si)/s 9/ 1/ Stresses above the absolu

19、te maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. 2/ Unless otherwise specified, all voltages are referenced to VSS. 3/ The limits for the parameters specified herein shall apply over the full specifie

20、d VDDrange and case temperature range of -55C to +125C unless otherwise specified. 4/ Per MIL-STD-883 method 1012.1 section 3.4.1, PD(Package) = (TJ (max) - TC(max). JC5/ Derate system propagation delays by difference in rise time to switch point for tror tf 1 ns/V. 6/ Radiation testing is performed

21、 on the standard evaluation circuit. 7/ Device types 01 and 03 are tested in accordance with MIL-STD-883, method 1019, condition A. 8/ Device type 02 is irradiated at dose rate = 50 - 300 rads (Si)/s in accordance with MIL-STD-883, method 1019, condition A, and is guaranteed to a maximum total dose

22、specified. The effective dose rate after extended room temperature anneal = 1 rad (Si)/s per MIL-STD-883, method 1019, condition A, section 3.11.2. The total dose specification for this device only applies to the specified effective dose rate, or lower, environment. 9/ Limits are guaranteed by desig

23、n or process, but not production tested unless specified by the customer through the purchase order or contract. 10/ This limit is applicable for device types 01, 02, 03 with VDD 4.5 V. Device types 02 and 03 do not meet this limit at VDD 4.5 V. Provided by IHSNot for ResaleNo reproduction or networ

24、king permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-96584 REVISION LEVEL C SHEET 4 DSCC FORM 2234 APR 97 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, and handbooks. The following specification, stan

25、dards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. DEPARTMENT OF DEFENSE SPECIFICATION MIL-PRF-38535 - Integrated Circuits Manufacturing, General Specification for

26、. DEPARTMENT OF DEFENSE STANDARDS MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-1835 - Interface Standard Electronic Component Case Outlines. DEPARTMENT OF DEFENSE HANDBOOKS MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Copies of t

27、hese documents are available online at https:/assist.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 Non-Government publications. The following document(s) form a part of this document to the extent specified he

28、rein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of semiconductor Devices

29、. (Copies of these documents are available online at http:/www.astm.org or from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959). 2.3 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text

30、 of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. 3. REQUIREMENTS 3.1 Item requirements. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535

31、 and as specified herein or as modified in the device manufacturers Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shal

32、l be as specified in MIL-PRF-38535 and herein for device classes Q and V. 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein. 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. 3.2.3 Truth table. The truth table shall be as specified

33、on figure 2. 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3. 3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS

34、-,-,-STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-96584 REVISION LEVEL C SHEET 5 DSCC FORM 2234 APR 97 3.2.6 Radiation exposure circuit. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall

35、 be made available to the preparing and acquiring activity upon request. 3.3 Electrical performance characteristics and postirradiation parameter limits. Unless otherwise specified herein, the electrical performance characteristics and post irradiation parameter limits are as specified in table IA a

36、nd shall apply over the full case operating temperature range. 3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table IA. 3.5 Marking. The part shall be marked with the PIN listed i

37、n 1.2 herein. In addition, the manufacturers PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the “5962-“ on the device. For RHA product using this option, the RHA designator shall

38、 still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. 3.5.1 Certification/compliance mark. The certification mark for device classes Q and V shall be a “QML“ or “Q“ as required in MIL-PRF-38535. 3.6 Certificate of compliance. For device classes Q and V, a ce

39、rtificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm

40、 that the manufacturers product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein. 3.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided w

41、ith each lot of microcircuits delivered to this drawing. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-96584 REVISION LEVEL C SHEET 6 DSCC FORM 2234 APR 97 TA

42、BLE IA. Electrical performance characteristics. Test Symbol Test conditions 1/ 2/ -55C TC +125C unless otherwise specified Device type VDDGroup A subgroups Limits 3/ Unit Min Max High level input voltage VIH 02, 03 3.0 V and 3.6 V 1, 2, 3 0.7 VDDV All 4.5 V and 5.5 V 1, 2, 3 0.7 VDD V Low level inpu

43、t voltage VIL 02, 03 3.0 V and 3.6 V 1, 2, 3 0.3 VDDV All 4.5 V and 5.5 V 1, 2, 3 0.3 VDDV High level output voltage VOH For all inputs affecting output under test, VIN= VDDor VSSIOH= -100 A 02, 03 3.0 V and 3.6 V 1, 2, 3 VDD - 0.25 V All 4.5 V and 5.5 V 1, 2, 3 VDD - 0.25 V Low level output voltage

44、 VOL For all inputs affecting output under test, VIN= VDDor VSSIOL = +100 A 02, 03 3.0 V and 3.6 V 1, 2, 3 0.25 V All 4.5 V and 5.5 V 1, 2, 3 0.25 V Input current high IIH For input under test, VIN= VDDFor all other inputs, VIN= VDDor VSSAll 5.5 V 1, 2, 3 +1.0 A Input current low IIL For input under

45、 test, VIN= VSSFor all other inputs, VIN= VDDor VSSAll 5.5 V 1, 2, 3 -1.0 A Output current (source) IOH4/ For output under test, VOUT= VDD - 0.4 V For all other inputs, VIN= VDDor VSS02, 03 3.0 V and 3.6 V 1, 2, 3 -6.0 mA All 4.5 V and 5.5 V 1, 2, 3 -8.0 mA Output current (sink) IOL4/ For output und

46、er test, VOUT= 0.4 V For all other inputs, VIN= VDDor VSS02, 03 3.0 V and 3.6 V 1, 2, 3 +6.0 mA All 4.5 V and 5.5 V 1, 2, 3 +8.0 mA See footnotes at end of table. Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STANDARD MICROCIRCUIT DRAWING DLA LAND

47、AND MARITIME COLUMBUS, OHIO 43218-3990 SIZE A 5962-96584 REVISION LEVEL C SHEET 7 DSCC FORM 2234 APR 97 TABLE IA. Electrical performance characteristics Continued. Test Symbol Test conditions 1/ 2/ -55C TC +125C unless otherwise specified Device type VDDGroup A subgroups Limits 3/ Unit Min Max Quies

48、cent supply current IDDQ VIN= VDDor VSSAll 5.5 V 1, 2, 3 10.0 A M, D, P, L, R, F, G, H 2/ 02, 03 5.5 V 1 25.0 Short circuit output current IOS5/, 6/ For output under test VOUT= VDDand VSS02, 03 3.6 V 1, 2, 3 100 mA All 5.5 V 1, 2, 3 200 mA Input capacitance CINf = 1 MHz See 4.4.1c All 0.0 V 4 15.0 pF Output capacitance COUTf = 1 MHz See 4.4.1c All 0.0 V 4 15.0 pF Switching power dissipation PSW7/ CL= 50 pF, per switching output 02, 03 3.0 V and 3.6 V 4, 5, 6 0.5 mW/ MHz 01 4.5 V and 5.5 V 4, 5, 6 1.9 mW/ MHz 02, 03

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1