ITU-R M 1452-2-2012 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications《智能传输系统应用的毫米波车载防撞雷达和无线电通信系统》.pdf

上传人:赵齐羽 文档编号:791733 上传时间:2019-02-02 格式:PDF 页数:9 大小:1.33MB
下载 相关 举报
ITU-R M 1452-2-2012 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications《智能传输系统应用的毫米波车载防撞雷达和无线电通信系统》.pdf_第1页
第1页 / 共9页
ITU-R M 1452-2-2012 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications《智能传输系统应用的毫米波车载防撞雷达和无线电通信系统》.pdf_第2页
第2页 / 共9页
ITU-R M 1452-2-2012 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications《智能传输系统应用的毫米波车载防撞雷达和无线电通信系统》.pdf_第3页
第3页 / 共9页
ITU-R M 1452-2-2012 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications《智能传输系统应用的毫米波车载防撞雷达和无线电通信系统》.pdf_第4页
第4页 / 共9页
ITU-R M 1452-2-2012 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications《智能传输系统应用的毫米波车载防撞雷达和无线电通信系统》.pdf_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 Recommendation ITU-R M.1452-2(05/2012)Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applicationsM SeriesMobile, radiodetermination, amateur and related satellite servicesii Rec. ITU-R M.1452-2 Foreword The role of the Radiocommu

2、nication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulator

3、y and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/I

4、TU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http:/www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R

5、/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http:/www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound)

6、BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between

7、 fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. Electronic Pu

8、blication Geneva, 2012 ITU 2012 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU. Rec. ITU-R M.1452-2 1 RECOMMENDATION ITU-R M.1452-2 Millimetre wave vehicular collision avoidance radars and radiocommunication systems for

9、intelligent transport system applications (Question ITU-R 205/5) (2000-2009-2012) Scope This Recommendation provides system requirements, technical and operational characteristics of millimetre wave radiocommunication systems for intelligent transport system applications to be used for system design

10、 objectives. The Recommendation covers vehicular collision avoidance radar operating in the 76-77 GHz and 77-81 GHz bands, as well as integrated millimetre wave radiocommunication systems for ITS applications in the 57-66 GHz range for vehicle-to-vehicle radiocommunications and radiocommunications b

11、etween the vehicle and roadside infrastructure. The ITU Radiocommunication Assembly, considering a) that intelligent transport systems (ITS) will significantly contribute to the improvement of transportation and public safety; b) that international standards would facilitate worldwide applications o

12、f ITS and provide for economies of scale in bringing ITS equipment and services to the public; c) that harmonization of ITS applications is dependent on common radio spectrum allocations; d) that high-capacity transmission systems will be required for ITS radiocommunication systems in order to suppo

13、rt multimedia and high-resolution applications; e) that low-capacity transmission systems will also be required for ITS radiocommunication systems to support safe vehicle operation, such as a collision avoidance radar; f) that an integrated system of radar with radiocommunications is beneficial for

14、safe driving and driver comfort; g) that millimetre wave high-speed ITS communication systems using radio-over-fibre technology have been intensively studied in research fora and industries; h) that millimetre wave frequencies have significant advantages and provide a wide bandwidth for such integra

15、ted ITS radar and communication systems; j) that millimetre wave frequencies are also used by other radio systems and services operating in accordance with the Radio Regulations; k) that strong absorption in a part of millimetre wave frequency ranges due to atmospheric oxygen and water vapour has a

16、potential to reduce the interference among different radio services operating in the ranges; l) that technical and operational characteristics of integrated millimetre wave radiocommunication systems for ITS applications need to be identified to facilitate the global deployment of such a system, 2 R

17、ec. ITU-R M.1452-2 noting a) that the International Organization for Standardization (ISO) has published standards on non-radio aspects of ITS in ISO/TC204, taking into account the work of recognized external organizations; b) that the European Telecommunications Standards Institute (ETSI) has publi

18、shed standards on radio aspects of ITS in ETSI/ERM (Electromagnetic compatibility and Radio Spectrum Matters) which may further contribute to the efforts in ITU-R; c) that the Institute of Electrical and Electronics Engineers (IEEE) is addressing millimetre wave communication standards for wireless

19、personal networks in the frequency range 57-66 GHz; d) that the Land Mobile Handbook (Volume 4 on ITS) contains information on millimetre wave communications, including propagation characteristics for vehicle-to-vehicle communications and inter-vehicle communications and radar, recognizing a) that t

20、he band 77.5-78 GHz is allocated worldwide on a primary basis to the amateur and amateur-satellites services; b) that the bands 76-77.5 GHz and 78-81 GHz are allocated worldwide on a primary basis to the radiolocation and radio astronomy services, recommends 1 that the operational and technical char

21、acteristics of automotive radars operating in the 76-77 GHz band, as given in Annex 1, should be used as a guideline for system design objectives; 2 that the operational and technical characteristics for automotive radar equipment operating in the 77-81 GHz band, as given in Annex 2, should be used

22、as a guideline for system design objectives; 3 that the operational and technical characteristics of millimetre wave radiocommunication systems for ITS applications for data communication between vehicle-to-vehicle and vehicle-to-roadside, as given in Annex 3, should be used as a guideline for syste

23、m design objectives. Annex 1 Vehicular collision avoidance radar at 76-77 GHz 1 General 1.1 Introduction Several millimetre wave bands are considered for vehicular radar. The 76-77 GHz band has already been designated by the Federal Communications Commission (FCC) in the United States of America and

24、 by the Ministry of Internal Affairs and Communications (MIC) in Japan for these purposes. In the United States, vehicular radars operating in the 76-77 GHz band are regulated according to FCC 47 part 15.253 and as part 15 device; may not cause harmful interference and must accept interference that

25、may be caused by the operation of an authorized radio system, by another intentional or unintentional radiator, by industrial, scientific and medical (ISM) equipment, Rec. ITU-R M.1452-2 3 or by an incidental radiator. Furthermore, in accordance with European spectrum requirements for Road Transport

26、 and Traffic Telematics (RTTT), ETSI has adopted European standards for automative radar operating in the 76-77 GHz band (ETSI EN 301 091) and ECC adopted a decision (ECC/DEC/(02)01) on the frequency bands to be designated for the coordinated introduction of RTTT, including the band 76-77 GHz. In Ja

27、pan, the 76-77 GHz band is designated for this kind of application (ARIB STD-T48). In October 2010, the Russian Federation identified the 76-77 GHz band for automotive radars. This effort has led Asia-Pacific Telecommunity Standardization Program (ASTAP) to consider a proposal on a draft standard fo

28、r vehicular collision avoidance radar operating in the 76-77 GHz band. 1.2 Scope Todays vehicular radar systems in the millimetre wave are of two categories according to the measurement ranges and bandwidth: Category 1: Adaptive Cruise Control (ACC) and collision avoidance radar (CA), operating in t

29、he band 76-77 GHz, for measurement ranges up to 300 m. Category 2 “Short-range” radar for applications such as Blind Spot Detection (BSD), Lane-Change Assist (LCA), and Rear-Traffic-Crossing-Alert (RTCA), operating in the band 77-81 GHz for measurement ranges up to 100 m (see Annex 2 for Category 2)

30、. The rationale for separating these applications into two different frequency bands is given in ECC Report 56, which reveals, that sharing studies have concluded that sharing is not achievable between Category 1 and Category 2 if operated in a common frequency band. Since vehicles are sold worldwid

31、e, the automotive industry is highly interested in a worldwide harmonization of these frequency bands and the corresponding parameters. Figure 1 shows an application example of automotive radar. FIGURE 1 Image of vehicle radar systems M.1452-01MillimetrewaveAutomotive radarMovingvehicleAbout 300 m4

32、Rec. ITU-R M.1452-2 Depending on the number of radar sensors and their position it is possible to detect objects in sectors or even the complete surrounding of a car. The sensor signals are the basis not only for driver assistance systems like Adaptive Cruise Control but also for a broad variety of

33、automotive applications of active and passive safety. Systems for monitoring the proximity to vehicles will play an important role in ensuring driving safety. With its resistance to bad weather and dirt, automotive radar is suitable for vehicles driven in severe conditions. Figure 2 shows the config

34、uration of automotive radar. FIGURE 2 Configuration of automotive radar M.1452-02AntennaRFunitSignal processingunitRecognitionunitControlunitSubsystems are as follows: Antenna/RF unit This part consists of a transmitting antenna, a receiving antenna, receiving equipment and transmission equipment. S

35、ignal modulations, conversions to high frequencies, radio-wave transmission, and radio-wave reception are handled in this part. This part could be equipped with several antennas and could perform beam scanning. Signal processing unit This unit renders distance and speed by calculating signals handed

36、 over from the RF unit. Rendering of average distance and speed, and mitigation of interference are sometimes handled here. When the antenna performs beam scanning, this unit calculates the direction of detected objects. Recognition unit This unit can select and arrange the most wanted or necessary

37、data depending on the needs of each system. For example, the unit will recognize the most relevant objects, and can judge whether the vehicle in front is in lane. The unit occasionally averages figures gathered, filters interference, and enhances measuring accuracy and reliability of data by trackin

38、g objects and by data fusion with data from other sensors. 2 System requirements 2.1 Radar and modulation methods The following radar methods (with modulation methods) are recommended: Chirp radar (fast FM-CW) method; pulse method (pulse modulation); pulsed frequency hopping; two frequency CW method

39、 (no modulation or frequency modulation); spread spectrum method (direct sequence spread spectrum). Rec. ITU-R M.1452-2 5 2.2 Operational and technical characteristics of 76-77 GHz automotive radar Characteristics of 76-77 GHz automotive radar are given in Table 1. TABLE 1 Characteristics of 76-77 G

40、Hz automotive radar Characteristic (parameter) Value Operational characteristics Application Adaptive cruise control (ACC) ACC stop Chirp radar (fast FM-CW) method; spread spectrum method (direct sequence spread spectrum); pulse method (pulse modulation); two frequency CW method (no modulation or fr

41、equency modulation); frequency code method. 2.2 Operational and technical characteristics of 77-81 GHz automotive radar The typical automotive radar characteristics are given in Table 2. TABLE 2 Characteristics of 77-81 GHz automotive radar Parameter Value System A System B1Mean power spectral densi

42、ty (e.i.r.p.) 9 dBm/MHz 3 dBm/MHz (NOTE 1) Peak power (e.i.r.p.) +45 dBm +55 dBm (NOTE 2) Transmit power 10 dBm Antenna gain 35 dBi Specified bandwidth Up to 4 GHz NOTE 1 The maximum mean power spectral density outside a vehicle resulting from the operation of one short-range radar shall not exceed

43、9 dBm/MHz e.i.r.p. NOTE 2 Peak power is defined in 50 MHz bandwidth. 1The parameters of System B are derived from ETSI EN 302 264. Rec. ITU-R M.1452-2 7 Annex 3 Technical characteristics of millimetre wave radiocommunication systems for data communications between vehicles and between vehicles and r

44、oadside infrastructure 1 General technical characteristics Communications method: one-way, simplex, half duplex, full duplex, multicast; Modulation method: as required by application; Frequency band: 57.0-66.0 GHz (channel arrangements to be used for ITS applications will be specified by regions or

45、countries separately); Transmitter power (power transferred to antenna): 10 mW or less/ e.i.r.p: 40 dBm or less; Permissible occupied bandwidth: 2.5 GHz or less. 2 Examples of technical characteristics of millimetre wave radiocommunication systems for ITS applications The characteristics specified f

46、or millimetre wave radiocommunication systems for ITS are shown in Table 3. TABLE 3 Technical characteristics of millimetre wave radiocommunication systems for ITS applications Item Technical characteristicSystem A System B System C Communication method One way, simplex, half duplex, full duplex, mu

47、lticast Modulation method The modulation method is not provided for to correspond to the upgrade of the future use Frequency band 63.0-64.0 GHz 59.0-66.0 GHz 57.0-64.0 GHz Transmitter power (power transferred to antenna) 10 mW or less 10 mW or less Maximum e.i.r.p. 40 dBm Permissible occupied bandwidth 2.5 GHz or less Antenna gain 23 dBi or less (side lobe attenuation: 20 dB) 47 dBi or less 17 dBi (47 dBi for point to point application) _

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1