ITU-R REPORT M 2134-2008 Requirements related to technical performance for IMT-Advanced radio interface(s)《高级国际移动通信无线电接口在技术性能上的要求》.pdf

上传人:fatcommittee260 文档编号:793006 上传时间:2019-02-02 格式:PDF 页数:8 大小:88.55KB
下载 相关 举报
ITU-R REPORT M 2134-2008 Requirements related to technical performance for IMT-Advanced radio interface(s)《高级国际移动通信无线电接口在技术性能上的要求》.pdf_第1页
第1页 / 共8页
ITU-R REPORT M 2134-2008 Requirements related to technical performance for IMT-Advanced radio interface(s)《高级国际移动通信无线电接口在技术性能上的要求》.pdf_第2页
第2页 / 共8页
ITU-R REPORT M 2134-2008 Requirements related to technical performance for IMT-Advanced radio interface(s)《高级国际移动通信无线电接口在技术性能上的要求》.pdf_第3页
第3页 / 共8页
ITU-R REPORT M 2134-2008 Requirements related to technical performance for IMT-Advanced radio interface(s)《高级国际移动通信无线电接口在技术性能上的要求》.pdf_第4页
第4页 / 共8页
ITU-R REPORT M 2134-2008 Requirements related to technical performance for IMT-Advanced radio interface(s)《高级国际移动通信无线电接口在技术性能上的要求》.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、 Rep. ITU-R M.2134 1 REPORT ITU-R M.2134 Requirements related to technical performance for IMT-Advanced radio interface(s) (2008) TABLE OF CONTENTS Page 1 Introduction 2 2 Scope and purpose 2 3 Related ITU-R texts . 3 4 Minimum requirements 3 4.1 Cell spectral efficiency . 4 4.2 Peak spectral effici

2、ency 4 4.3 Bandwidth. 5 4.4 Cell edge user spectral efficiency . 5 4.5 Latency . 6 4.5.1 Control plane latency . 6 4.5.2 User plane latency 6 4.6 Mobility 6 4.7 Handover. 7 4.8 VoIP Capacity. 8 2 Rep. ITU-R M.2134 1 Introduction International Mobile Telecommunications-Advanced (IMT-Advanced) systems

3、 are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Such systems provide access to a wide range of telecommunication services including advanced mobile services, supported by mobile and fixed networks, which are increasingly packet-based. IMT-Advanced syste

4、ms support low to high mobility applications and a wide range of data rates in accordance with user and service demands in multiple user environments. IMT-Advanced also has capabilities for high-quality multimedia applications within a wide range of services and platforms providing a significant imp

5、rovement in performance and quality of service. The key features of IMT-Advanced are: a high degree of commonality of functionality worldwide while retaining the flexibility to support a wide range of services and applications in a cost efficient manner; compatibility of services within IMT and with

6、 fixed networks; capability of interworking with other radio access systems; high-quality mobile services; user equipment suitable for worldwide use; user-friendly applications, services and equipment; worldwide roaming capability; enhanced peak data rates to support advanced services and applicatio

7、ns (100 Mbit/s for high and 1 Gbit/s for low mobility were established as targets for research)1. These features enable IMT-Advanced to address evolving user needs. The capabilities of IMT-Advanced systems are being continuously enhanced in line with user trends and technology developments. 2 Scope

8、and purpose This Report describes requirements related to technical performance for IMT-Advanced candidate radio interfaces. These requirements are used in the development of Report ITU-R M.2135. This Report also provides the necessary background information about the individual requirements and the

9、 justification for the items and values chosen. Provision of such background information is needed for a broader understanding of the requirements. This Report is based on the ongoing development activities from external research and technology organizations. 1Data rates sourced from Recommendation

10、ITU-R M.1645. Rep. ITU-R M.2134 3 3 Related ITU-R texts Recommendation ITU-R M.1224 Recommendation ITU-R M.1645 Recommendation ITU-R M.1768 Recommendation ITU-R M.1822 Report ITU-R M.2038 Report ITU-R M.2072 Report ITU-R M.2074 Report ITU-R M.2078 Report ITU-R M.2079 Report ITU-R M.2135 Report ITU-R

11、 M.2133. 4 Minimum requirements IMT-Advanced can be considered from multiple perspectives, including the users, manufacturers, application developers, network operators, and service and content providers as noted in 4.2.2 in Recommendation ITU-R M.1645 Framework and overall objectives of the future

12、development of IMT-2000 and systems beyond IMT-2000. Therefore, it is recognized that the technologies for IMT-Advanced can be applied in a variety of deployment scenarios and can support a range of environments, different service capabilities, and technology options. Consideration of every variatio

13、n to encompass all situations is therefore not possible; nonetheless the work of the ITU-R has been to determine a representative view of IMT-Advanced consistent with the process defined in Resolution ITU-R 57 Principles for the process of development of IMT-Advanced and the requirements defined in

14、this Report. The requirements presented in this document are for the purpose of consistent definition, specification, and evaluation of the candidate RITs or SRITs for IMT-Advanced in ITU-R in conjunction with the development of Recommendations and Reports, such as the framework and key characterist

15、ics and the detailed specifications of IMT-Advanced. The intent of these requirements is to ensure that IMT-Advanced technologies are able to fulfil the objectives of IMT-Advanced and to set a specific level of minimum performance that each proposed technology needs to achieve in order to be conside

16、red by ITU-R for IMT-Advanced. These requirements are not intended to restrict the full range of capabilities or performance that candidate technologies for IMT-Advanced might achieve, nor is it intended to describe how the IMT-Advanced technologies might perform in actual deployments under operatin

17、g conditions that could be different from those presented in ITU-R Recommendations and Reports on IMT-Advanced. Requirements are to be evaluated according to the criteria defined in Report ITU-R M.2135 Requirements, evaluation criteria, and submission templates for the development of IMT-Advanced. N

18、OTE 1 The values herein are for a radio interface technology (RIT) or a set of radio interface technologies (SRIT). 4 Rep. ITU-R M.2134 4.1 Cell spectral efficiency Cell2spectral efficiency () is defined as the aggregate throughput of all users (the number of correctly received bits, i.e. the number

19、 of bits contained in the service data units (SDUs) delivered to Layer 3, over a certain period of time) divided by the channel bandwidth divided by the number of cells. The channel bandwidth for this purpose is defined as the effective bandwidth times the frequency reuse factor, where the effective

20、 bandwidth is the operating bandwidth normalised appropriately considering the uplink/downlink ratio. The cell spectral efficiency is measured in bit/s/Hz/cell. Let idenote the number of correctly received bits by user i (downlink) or from user i (uplink) in a system comprising a user population of

21、N users and M cells. Furthermore, let denote the channel bandwidth and T the time over which the data bits are received. The cell spectral efficiency, , is then defined according to equation (1). MTNii=1(1) TABLE 1 Cell spectral efficiency Test environment (1)Downlink (bit/s/Hz/cell) Uplink (bit/s/H

22、z/cell) Indoor 3 2.25 Microcellular 2.6 1.80 Base coverage urban 2.2 1.4 High speed 1.1 0.7 (1)The test environments are described in Report ITU-R M.2135. These values were defined assuming an antenna configuration of downlink 4 2, uplink 2 4. However, this does not form part of the requirement and

23、the conditions for evaluation are described in Report ITU-R M.2135 4.2 Peak spectral efficiency The peak spectral efficiency is the highest theoretical data rate (normalised by bandwidth), which is the received data bits assuming error-free conditions assignable to a single mobile station, when all

24、available radio resources for the corresponding link direction are utilised (i.e., excluding radio resources that are used for physical layer synchronisation, reference signals or pilots, guard bands and guard times). 2A cell is equivalent to a sector, e.g. a 3-sector site has 3 cells. Rep. ITU-R M.

25、2134 5 The minimum requirements for peak spectral efficiencies are as follows3: Downlink peak spectral efficiency is 15 bit/s/Hz Uplink peak spectral efficiency is 6.75 bit/s/Hz. These values were defined assuming an antenna configuration of downlink 4 4, uplink 2 4. However this does not form part

26、of the requirement and the conditions for evaluation are described in Report ITU-R M.2135. 4.3 Bandwidth Scalable bandwidth is the ability of the candidate RIT to operate with different bandwidth allocations. This bandwidth may be supported by single or multiple RF carriers. The RIT shall support a

27、scalable bandwidth up to and including 40 MHz. Proponents are encouraged to consider extensions to support operation in wider bandwidths (e.g. up to 100 MHz) and the research targets expressed in Recommendation ITU-R M.1645. 4.4 Cell edge user spectral efficiency The (normalized) user throughput is

28、defined as the average user throughput (the number of correctly received bits by users, i.e., the number of bits contained in the SDU delivered to Layer 3, over a certain period of time, divided by the channel bandwidth and is measured in bit/s/Hz. The channel bandwidth for this purpose is defined a

29、s the effective bandwidth times the frequency reuse factor, where the effective bandwidth is the operating bandwidth normalised appropriately considering the uplink/downlink ratio. The cell edge user spectral efficiency is defined as 5% point of the cumulative distribution function (CDF) of the norm

30、alized user throughput. Table 2 lists the cell edge user spectral efficiency requirements for various test environments. With idenoting the number of correctly received bits of user i, Tithe active session time for user i and the channel bandwidth, the (normalized) user throughput of user i, i, is d

31、efined according to equation (2). =iiiT(2) TABLE 2 Cell edge user spectral efficiency Test environment(1)Downlink (bit/s/Hz) Uplink (bit/s/Hz) Indoor 0.1 0.07 Microcellular 0.075 0.05 Base coverage urban 0.06 0.03 High speed 0.04 0.015 (1)The test environments are described in Report ITU-R M.2135. 3

32、For information, theoretical peak data rates can then be determined as in the following examples, which are calculated by multiplying the peak spectral efficiency and the bandwidth: Example downlink peak data rate in 40 MHz is 600 Mbit/s. Example downlink peak data rate in 100 MHz is 1 500 Mbit/s. E

33、xample uplink peak data rate in 40 MHz is 270 Mbit/s. Example uplink peak data rate in 100 MHz is 675 Mbit/s. 6 Rep. ITU-R M.2134 These values were defined assuming an antenna configuration of downlink 4 2, uplink 2 4. However, this does not form part of the requirement and the conditions for evalua

34、tion are described in Report ITU-R M.2135. 4.5 Latency 4.5.1 Control plane latency Control plane (C-Plane) latency is typically measured as the transition time from different connection modes, e.g., from idle to active state. A transition time (excluding downlink paging delay and wireline network si

35、gnalling delay) of less than 100 ms shall be achievable from idle state to an active state in such a way that the user plane is established. 4.5.2 User plane latency The user plane latency (also known as transport delay) is defined as the one-way transit time between an SDU packet being available at

36、 the IP layer in the user terminal/base station and the availability of this packet (protocol data unit, PDU) at IP layer in the base station/user terminal. User plane packet delay includes delay introduced by associated protocols and control signalling assuming the user terminal is in the active st

37、ate. IMT-Advanced systems shall be able to achieve a user plane latency of less than 10 ms in unloaded conditions (i.e., a single user with a single data stream) for small IP packets (e.g., 0 byte payload + IP header) for both downlink and uplink. 4.6 Mobility The following classes of mobility are d

38、efined: Stationary: 0 km/h Pedestrian: 0 km/h to 10 km/h Vehicular: 10 to 120 km/h High speed vehicular: 120 to 350 km/h Table 3 defines the mobility classes that shall be supported in the respective test environment. TABLE 3 Mobility classes Test environments(1)Indoor Microcellular Base coverage ur

39、ban High speed Mobility classes supported Stationary, pedestrian Stationary, pedestrian, Vehicular (up to 30 km/h) Stationary, pedestrian, vehicular High speed vehicular, vehicular (1)The test environments are described in Report ITU-R M.2135. A mobility class is supported if the traffic channel lin

40、k data rate, normalized by bandwidth, on the uplink, is as shown in Table 4, when the user is moving at the maximum speed in that mobility class in each of the test environments. Rep. ITU-R M.2134 7 TABLE 4 Traffic channel link data rates Bit/s/Hz Speed (km/h) Indoor 1.0 10 Microcellular 0.75 30 Bas

41、e coverage urban 0.55 120 High speed 0.25 350 These values were defined assuming an antenna configuration of downlink 4 2, uplink 2 4. However, this does not form part of the requirements and the conditions for evaluation are described in Report ITU-R M.2135. 4.7 Handover The handover interruption t

42、ime is defined as the time duration during which a user terminal cannot exchange user plane packets with any base station. The handover interruption time includes the time required to execute any radio access network procedure, radio resource control signalling protocol, or other message exchanges b

43、etween the user equipment and the radio access network, as applicable to the candidate RIT or SRIT. For the purposes of determining handover interruption time, interactions with the core network (i.e., network entities beyond the radio access network) are assumed to occur in zero time. It is also as

44、sumed that all necessary attributes of the target channel (that is, downlink synchronisation is achieved and uplink access procedures, if applicable, are successfully completed) are known at initiation of the handover from the serving channel to the target channel. The IMT-Advanced proposal shall be

45、 able to support handover interruption times specified in Table 5. TABLE 5 Handover interruption times Handover type Interruption time (ms) Intra-frequency 27.5 Inter-frequency within a spectrum band between spectrum bands 40 60 In addition, inter-system handovers between the candidate IMT-Advanced

46、system and at least one IMT system shall be supported, but are not subject to the limits in Table 5. 8 Rep. ITU-R M.2134 4.8 VoIP capacity VoIP capacity was derived assuming a 12.2 kbit/s codec with a 50% activity factor such that the percentage of users in outage is less than 2% where a user is def

47、ined to have experienced a voice outage if less than 98% of the VoIP packets have been delivered successfully to the user within a one way radio access delay bound of 50 ms. However, this codec does not form a part of the requirements and the conditions for evaluation are described in Report ITU-R M

48、.2135. The VoIP capacity is the minimum of the calculated capacity for either link direction divided by the effective bandwidth in the respective link direction4. These values were defined assuming an antenna configuration of 4 2 in the downlink and 2 4 in the uplink. However, the antenna configurat

49、ion is not a minimum requirement and the conditions for evaluation are described in Report ITU-R M.2135. TABLE 6 VoIP capacity Test environment(1)Min VoIP capacity (Active users/sector/MHz) Indoor 50 Microcellular 40 Base coverage urban 40 High speed 30 (1)The test environments are described in Report ITU-R M.2135. 4In other words, the effective bandwidth is the operating bandwidth normalised appropriately considering the uplink/downlink ratio.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1