1、 KSKSKSKSKSKSKSK KSKSKS KSKSK KSKS KSK KS KS X ISO/IEC 15946 1 1:KS X ISO/IEC 15946 1:2008 2008 11 24 http:/www.kats.go.krKS X ISO/IEC 15946 1:2008 : e- ( ) ( ) () () ( ) : (http:/www.standard.go.kr) : : 2003 12 29 : 2008 11 24 2008-0798 : e- : ( 025097262) (http:/www.kats.go.kr). 10 5 , . KS X ISO/
2、IEC 15946 1:2008 i ii .1 1 1 2 1 3 1 4 .2 5 .2 6 .6 7 .8 8 ( ) 8 A( ) 10 B( ) NIST .25 27 KS X ISO/IEC 15946 1:2008 .28 KS X ISO/IEC 15946 1:2008 ii e- . KS X ISO/IEC 15946 1: 2008 . A( ) B( ) NIST KS X ISO/IEC 15946 . 1: 2: 3: 4: . KS X ISO/IEC 15946 1:2008 1: Information technology Security techni
3、ques Cryptographic techniques based on elliptic curves Part 1: General 2002 1 ISO/IEC 15946 1, Information technology Security techniques Cryptographic techniques based on elliptic curves Part 1: General . 1 KS X ISO/IEC 15946 . . KS X ISO/IEC 15946 . ( 2 ) . ( ) . 2 KS X ISO/IEC 15946 . . 3 . ( ) .
4、 ( ) ( .) . KS X ISO/IEC 9796 2: 2003, (Integer factorization) KS X ISO/IEC 10118( ), KS X ISO/IEC 11770 3: 2003, 3: KS X ISO/IEC 15946 1:2008 2 KS X ISO/IEC 14888( ), KS X ISO/IEC 15946 2: 2003, 2: KS X ISO/IEC 15946 3: 2003, 3: KS X ISO/IEC 15946 4, 4: 4 . p 3 p 3 , . F(p) p F(2m) 2m F(pm) pm E p
5、3 F(pm) Y 2 X 3 aX b F(2m) Y 2 XY X 3 aX 2 b 0E . #(E) E (cardinality) q m1 m pmn #(E) Q E xQ Q x yQ Q y Q1 Q2 2 Q1 Q2 kQ E Q k , Q Q Q k . 0Q 0E ( k)Q k(Q) . G n E A, B dA A ( dA 1, , n 1 ) PA A ( PA ) (Q) Q 0E 5 . 5.1 5.1.1 p p . (isomorphism) F(p) . KS X ISO/IEC 15946 1:2008 3 F(p) p 0, 1, 2, .,
6、p 1 . F(p) . a) F(p) “ ” . b) F(p) F(p) 0 “ ” . 2 . “”: a, b F(p) ab ab: r , r F(p) a b p . “”: a, b F(p) ab ab: r , r F(p) a b p . “ ” “ ” “” “” . A.1.1 . 5.1.2 2m m1 2m . (isomorphism) F(2m) . F(2m) m . F(2m) F(2m) b11 b22 bmm(bi 0, 1, i 1, 2, ., m) F(2m) 1, 2, ., m . (b1b2 bm) . . 1 3 . F(2m) . a
7、) F(2m) “” . b) F(2m) F(2m)0 “” . 2 . “”: a, b F(2m) ab ab: r , r F(2m) a b (XORing) . “”: a, b F(2m) ab m . 1i, jm i j ij . =miiiaa1 =mjjjbb1 , ij ab=mimjjijiba11 . “ ” “ ” “” “” . (ordered) . . KS X ISO/IEC 15946 1:2008 4 5.1.3 F(pm) m p pm . (isomorphism) F(pm) . F(pm) m 1 F(p), p 2 F(2m) . F(pm)
8、 m p . F(pm) F(pm) a11 a22 amm(ai F(p), i 1, 2, ., m) F(pm) 1, 2, ., m . p (a1a2 am) . . F(pm) . a) F(pm) “” . b) F(pm) F(pm)0 “” . 2 . “”: a, b F(pm) ab ab: r , r F(pm) p . “”: a, b F(pm) ab m p . 1i, jm i j ij . =miiiaa1 =mjjjbb1 , ij ab=mimjjijiba11 . “ ” “ ” “” “” . (ordered) . . 5.2 F(p), F(2m)
9、 F(pm) 5.2.1 F(p) F(p) p 3 . F(p) E F(p) 3 (non-singular cubic equation) . E “ Weierstrass ” . F(p) (4a3 27b2) 0 (1) . Y 2 X 3 aX b, a, b F(p) (1) (1) F(p) E E 0E yQ2 xQ3 axQ b Q (xQ, yQ) F(p)F(p) . 0E F(p)F(p) (1) . 5.2.2 F(2m) m1 F(2m) . F(2m) E F(2m)KS X ISO/IEC 15946 1:2008 5 b 0 (2) . Y 2 XY X
10、3 aX 2 b, a, b F(2m) (2) m . (2) F(2m) E E 0E yQ2 xQ yQ xQ3 axQ2 b Q (xQ, yQ) F(2m)F(2m) . 0E F(2m)F(2m) (2) . 5.2.3 F(pm) F(pm) p 3 m . F(pm) F(pm) 3 (non-singular cubic equation) . E “ Weierstrass ” . F(pm) (4a3 27b2) 0 (3) . Y 2 X 3 aX b, a, b F(pm) (3) (3) F(pm) E E 0E yQ2 xQ3 axQ b Q (xQ, yQ) F
11、(pm)F(pm) . 0E F(pm)F(pm) (3) . F(pm) F(p), m 1 F(pm) . 5.2.4 . (supersingular and anomalous curves) (A.1.3 ). 5.2.5 2 “ ” . EE E E (Q1, Q2) 3 Q1 Q2 . E 0E . Q1 Q2 A.1.2, A.2.2 A.3.2 . 5.2.6 F(p) F(pm) P (x, y) (negative) p 3 F(p) P (x, y) (x, y) . 5.2.7 F(2m) P (x, y) F(2m) P (x, x y) . 5.2.8 “ ” n
12、 E G . G kG . kG k G (G G . G) , 0G 0E( ) ( k)G k( G) . KS X ISO/IEC 15946 1:2008 6 5.2.9 E Q (xQ, yQ) . (Q) Q . a) E F(p) (Q) xQ . b) E F(2m) xQ m . sm 1sm 2. s1s0 xQ . (Q)=102miiis c) E F(pm) xQ m p . xQ (sm 1sm 2. s1s0) F(p) m p . . (Q)=10miiisp 1 1 . , Q Q . 6 . ( , ECDSA) ( , KS X ISO/IEC 15946
13、 2 ECDSA KS X ISO/IEC 15946 3 ECMQV) . . . . a) 3 . b) 3 . 6.1 F(p) F(pm) 6.1.1 F(p) F(pm) m 1 F(p) F(pm) . . a) F(pm) pm. p 3 m 1 b) ( ) SEED. seed 1 . c) E F(pm) 2 a b: y2 x3 ax b KS X ISO/IEC 15946 1:2008 7 d) E G (xG, yG) F(pm) 2 xG yGe) n 4mp G n f) ( ) h #E(F(pm)/n g) . 6.2 F(p) F(pm) ( ) . a)
14、 pm . b) a, b, xG yG . c) a b SEED . d) (4a3 27b2) F(pm) 0 . e) F(pm) yG2 xG3 axG b . f) n n 4mp . n 1 . . g) nG 0E . h) h+ npm/12 h h . i) . MOV . A.5.1 . . #E pm . . (class) . . 6.3 F(2m) 6.3.1 F(2m) F(2m) . a) F(2m) q 2m , b) ( ) SEED c) E F(2m) 2 a b: y2 xy x3 ax2 b d) E G (xG, yG) F(2m) 2 xG yG
15、e) n 4m2 G n f) ( ) h #E(F(2m)/n 6.3.2 F(2m) ( ) . a) m q 2m . KS X ISO/IEC 15946 1:2008 8 b) a, b, xG yG m . c) a b SEED . d) b0 . e) F(2m) yG2 xGyG xG3 axG2 b . f) n n 4m2 . n 1 . . g) nG 0E . h) h+ nm/122 h h . i) . MOV . A.5.1 . . #E2m . . . . 7 . 7.1 I . a) 1, n 1 d . d . 1 n 1 . b) Q (xQ, yQ)
16、dG . c) (Q, d) , Q d . 7.2 II . a) 1, n 1 e de 1 mod n 1, n 1 d . d e . 1 n 1 . b) Q (xQ, yQ) eG . c) (Q, d) , Q d . 8 ( ) KS X ISO/IEC 15946 1:2008 9 , Q . a) Q 0E . b) xQ yQ F(q) . xQ yQ Q x y . c) q pm F(pm) yQ2 xQ3 axQ b . q 2m F(pm) yQ2 xQyQ xQ3 axQ2 b . d) nQ 0E . . . . . . a) . b) 3 . c) . . . EC , . . . KS X ISO/IEC 15946 1:2008 10 A ( ) . A.1 F(p) A.1.1 F(p) . 4. p p . F(p) . F(p) p 0, 1, 2, ., p 1 . F(p) “ ” “ ” 2 . a) F(p) “ ” . b) F(p)0 “ ” . F(p)0 F(p) . p 1 . F(p) a j 0,