NASA-CR-1677-1971 Brayton cycle vapor chamber (heat pipe) radiator study《布雷登循环蒸发室(热管)散热器研究》.pdf

上传人:registerpick115 文档编号:836648 上传时间:2019-02-20 格式:PDF 页数:283 大小:11.76MB
下载 相关 举报
NASA-CR-1677-1971 Brayton cycle vapor chamber (heat pipe) radiator study《布雷登循环蒸发室(热管)散热器研究》.pdf_第1页
第1页 / 共283页
NASA-CR-1677-1971 Brayton cycle vapor chamber (heat pipe) radiator study《布雷登循环蒸发室(热管)散热器研究》.pdf_第2页
第2页 / 共283页
NASA-CR-1677-1971 Brayton cycle vapor chamber (heat pipe) radiator study《布雷登循环蒸发室(热管)散热器研究》.pdf_第3页
第3页 / 共283页
NASA-CR-1677-1971 Brayton cycle vapor chamber (heat pipe) radiator study《布雷登循环蒸发室(热管)散热器研究》.pdf_第4页
第4页 / 共283页
NASA-CR-1677-1971 Brayton cycle vapor chamber (heat pipe) radiator study《布雷登循环蒸发室(热管)散热器研究》.pdf_第5页
第5页 / 共283页
点击查看更多>>
资源描述

1、AS*NTR%T* - L- REPORT I h h - F I = u 4 r/, * Z BRAYTON CYCLE VAPOR CHAMBER (HEAT PIPE) RADIATOR STUD by E. E. Gerrels and J. W. Larson I I Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-2. Government Accesson No. I - 4. Title and Subtltie ERAYTON C

2、YCLE VAPOR CHR141BER (HEAT PIPE) RADIATOR STUDY 6. perform in; Orgenizotro Code 7. Author(s) I E. E. Gerrels and J. W. Larson 8. Performin Or anization Report No. I GESP-?POSB 9. Performing Organization Name and Address 10. Work Unit No. General Electric Company King of Prussia Park Philadelphia, Pe

3、nnsylvania 1910 1 112. Sponsoring Agency Name and Address I Contractor Reort I 1 National Aeronautics and Space Administration I I I Washington, D. C. 20546 I14 Sponsoring Agency Code I 16. Abstract The vapor chamber (heat pipe) radiator is defined and evaluated as a potential candidate for rejectin

4、g waste heat from a Radioisotope Brayton Cycle space power system. A comparison is made with an operationally equivalent conduction fin radiator. Both rad- iators employed DC-200 heat transfer fluid within the primary ducts and aluminum as the basic structural material. Vapor chamber fluids are eval

5、uated and selected for thermal performance and containment within the radiator. Vapor chamber compatibility and performance tests are made for a number of candidate fluids. Preliminary designs are developed for both conduction fin and vapor chamber radiator concepts. A compar- ison shows no signific

6、ant advantages attributable to the Brayton cycle vapor chamber radiator where reliability and meteoroid criteria specify 0.99 to 0.999 probability of survival over a five-year lifetime. Brayton cycle Unclassified - unlimited Nuclear space power systems Radiators Unclassified - For sale by the Nation

7、al Teciinical Inforrnatioin Service, Springfield, Virginia 22151 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-FOREWORD The work described in this rep

8、ort was conducted by the General Electric Missile and Space Division under NASA contract NAS 3- 106 15. Mr. James P. Couch, Space Power Systems Division, NASA Lewis Research Center, was the Project Manager. The report was originally issued as General Electric report GESP-9036. Provided by IHSNot for

9、 ResaleNo reproduction or networking permitted without license from IHS-,-,-Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-See tion INTRODUCTION . . 1.1 General Discussion 1.2 Study Objectives. Goals and Tasks . 1.3 Report Contents SUMMARY . 2.1 Int

10、roduction 2.2 Vapor Chamber Evaluation and Selection 2.3 Vapor Chamber Fin Radiator Design 2.4 Conduction Fin Radiator Design 2.5 Vapor Chamber (Heat Pipe) Tests . 2.6 Radiator Evaluation and Comparison . 2.7 Conclusion. RADIATOR REQUIREMENTS 3.1 General Discussion 3.2 Powerplant and Configuration S

11、pecifications . 3.3 Performance Criteria 3.4 Vapor Chamber Working Fluid Criteria 3.5 Life Expectancy Considerations . 3.6 Meteoroid Criteria 3.7 Structural Criteria . 3.8 Structural Environiiental Criteria 3.8.1 Ground Handling Criteria 3.8.2 Launch. Lift-off. Boost Criteria . 3.8.3 Orbital Operati

12、on Criteria 3.9 Atmospheric Environmental Criteria WORKING FLUID SELECTION . 4.1 General Discussion 4.1.1 Specific Work Requirements 4.1.2 Vapor Chamber Fin Principles . 4. 2 Physical Properties of Worlting Fluids 4.2. 1 Fluid Requirements . 4.2.2 lciematifiestiorr of Candidate Fltricls Provided by

13、IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-4,2.3 Preliminary Fluid Perfornlanee Analysis 4.2-4 Compatibility of Candidate Working Fluids with Aluminum 4.3 Analytical Comparative Evaluation 4.3.1 Analytical Model of Vapor Chamber Fin 4.3.2 Comparison of Vapo

14、r Chamber Performance Using Candidate Working Fluids 4.4 Tests for Compatibility of Materials 4.4.1 Technical Approach 4.4.2 Capsule Design and Fabrication . 4.4.3 Capsule Filling and Sealing . 4.4.4 Capsule Test Apparatus . 4.4.5 Capsule Test Results 4.4.6 Evaluation and Conclusions for the Selecti

15、on of Vapor Chamber Working Fluids . RADIATOR DESIGN . . 5.1 Design Concepts . 5.1.1 General Discussion 5.1.2 Vapor Chamber Fin Radiator Design . 5 1.3 Conduction Fin Radiator Design . 5.2 Performance Analysis 5.2.1 Methodology 5.2.2. Results . 5.3 Structural Analysis . 5.3.1 General Discussion 5.3.

16、2 Conduction Fin Radiator . 5.3.3 Vapor Chamber Fin Radiator . 5.4 Fabrication and Assembly 5.4.1 Vapor Chamber Fin Radiator . 5.4.2 Conduction Fin Radiator . . 5.5 Weight Conparison VAPOR CmMBER TEST PROGRAM 6. 1 neraX.seussion . 6-2 Test Program Objectives Provided by IHSNot for ResaleNo reproduct

17、ion or networking permitted without license from IHS-,-,-TABLE 01“ CONTENTS (Cot“LLfd) Section 6. 3 Vapor Chinber Test Co;-LfigraMcns . 6.3.1 Design considerations . 6.3.2 Vapor Chamber Design 6.4 Test Program . 6.4.1 Test Setup . 6.4.2 Instrumentation . 6.4.3 Test Procedure . 6.5 Test Results . 6.5

18、.1 Test Data . 6.5.2 Test Accuracy 6.6 Test Conclusions VAPOR CHAMBER RADIATOR EVALUATION AND CONCLUSIONS . 7.1 General . 7.2 Evaluation Criteria Summary . 7.3 Evaluation Summary . 7.4 Conclusions . 8 REFERENCES APPENDIX A: TABULATED VALUES OF FLUID PROPERTIES . APPENDIX B: SPECIFICATION NO . P1224-

19、2-BRAYTON CYCLE SPACE POWER SYSTEM ATMOSPHERIC ENVIRONMENTAL SPECIFICATION Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Power Module Configuration Eight MW Vehicle Concept Interplanetary Configuration Vapor Chamber Radiator Design Characteristics

20、Summary Conduction Fin Radiator Design Characteristics Summary . Comparison of Vapor Chamber Fin to Conduction Fin Primary Radiators Trend in Launch Vehicle Dynamic Loads Acoustic Noise Frequency Spectrum Vapor Chamber Flow Dynamics Capillary Flow Parameters vs Temperature for Vapor . Chamber Workin

21、g Fluids Dimensionless Capi.llary Flow Parameter vs Temperature for Various Fluids Vapor Flow Parameter vs Temperature for Various Fluids Cichelli and Bonilla Correlation Critical Heat Flux vs Temperature for Various Fluids . Vapor Pressure vs Temperature for Various Fluids Total Yearly Ionization D

22、ose (1 gm/cm2 Aluminum Shielding. Polar Orbits) Vapor Chamber Radiator Panel . Individual Vapor Chamber Element Vapor Chamber Thermal Schematic Variation of Fin Effectiveness with Radiation Modulus for . Fin Radiating from Two Sides Heat Transfer Rate vs Temperature of A Single Vapor Chamber . a Vap

23、or Chamber Heat Radiated Per Unit Radiator Mass Conduction Fin Thickness vs Vapor Chamber Tube Diameter . and Temperature Conduction Fin Length vs Vapor Chamber ?Cube Diameter and Temperature. Individual Vapor Fin Evaporation Surface Thermal Flux . vs Temperature . Evaporative Vapor AT Comparison Pr

24、ovided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-LSSrY“ OF IS. LSJSTRATIOWS (ConlVd) Page . . Condensing Temperature Loss . Condenser Length Limit Effect of Tube Wall Thickness and Temperature on Vapor . Chamber Fin Heat Radiated Per Unit Radiator Mass

25、Probability That 70 Percent or More Units Survive as a Function of Unit Reliability Correlation of Individual Vapor Chamber Survival Probability Required to Achieve Fixed Overall Radiator Success Probability . Against Vapor Chamber Survival Fraction . 2 3 2veL T Fin Effectiveness vs h Radiation Modu

26、lus( ) for Fin Kt Radiating from Two Sides . Aluminum Capsule . Capsule Filling System Cross Section of Fill Tube Pinch-off Potted in Epoxy Cement (C67112007) Capsule Test Apparatus (C67101205) . Schematic of Thermocouple Circuit . Sectioned Aluminum Capsule Following Heating to 170 F with . Methyl

27、Alcohol (C67100450) . Capsule Test Data for n-Pentme Capsule Test Data for Benzene Capsule Test Data for Water in 321 Stainless Steel . Capsule Test Data for Ammonia . Capsule Test Data for Freon 11. Capsule No . 1 (T-156) Capsule Test Data for Freon 11. Capsule No . 2 (T=222) . Capsule Test Data fo

28、r Freon 114. Capsule No . 1 (T=155OF) . Capsule Test Data for Freon 113. Capsule No . 2 (T=225OF) . Capsule Test Data for Toluene . Capsule Test Data for n-Heptane Capsule Test Data for CP-32 Capsule Test Data for CP-34 Capsule Test Data for n-Butane. Capsule No . 1 . Capsule Test Data for n-Butane.

29、 Capsule No 2 . Configuration Possibilities 135 Vapor Chamber Radiator Conceptual View 136 Final Primary Duct-Evaporator Configuration 138 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-Alternative Design Staggered Vapor Chambers . Condensing Wick C

30、entral Fin Design . Offset Chamber Configuration Reynolds Number Versus Hydraulic Diameter . Model for Finned Duct Conduction Fin Radiator Heat Transfer Coefficients for Laminar and Turbulent Flow Versus Hydraulic Diameter Comparison of Convective Conductance for Laminar and Turbulent Flows . Effect

31、 of Survival Probability Distribution Between Ducts and Chambers on Vapor Chamber Radiator Weight Excess Area Required Versus Vapor Chamber Percent Failure (Aluminum Fins) . Weight Versus Area for Vapor Chamber Fin Primary Radiator . . Weight Versus Area for Conduction Fin Primary Radiator . Compari

32、son of Vapor Chamber Fin to Conduction Fin Primary Radiators Effect of Chamber Survival Fraction on Radiator Weight . Effect of Evaporator Temperature Drop on Vapor Chamber Fin Primary Radiator . Effect of Condensing Film Thickness on Vapor Chamber Fin Primary Radiator . Comparison of Primary Radiat

33、or Fluids for Conduction Fin Primary Radiator . Effect of Tube Spacing for Vapor Chamber Fin Primary . Radiator Effect of Sinli Temperature on Vapor Chamber Fin Primary Radiator Comparison of Sink Temperature on Conduction Fin Primary Radiator Comparison of Working Fluids for Vapor Chamber Fin Prinz

34、ary Radiator Effect of Vapor Chamber Diameter for Vapor Chamber Fin Primary Radiator Effect of Tube Spacing for Vapor Chamber Fin Primary . Racliator Effect of Primary Fluid Slot Width on Vapor Chamber Fin Primary Radiator Provided by IHSNot for ResaleNo reproduction or networking permitted without

35、license from IHS-,-,-Page Effect of Duct Fin Thickness for Vapor Chamber Fin Primary Radiator Effect of Tube Spacing for Conduction Fin Primary Radiator Effect of Primary Fluid Slot Width on Conduction Fin Primary Radiator Effect of Duct Fin Thickness for Conduction Fin Primary . Radiator Effect of

36、Number of Slots Per Tube for Conduction Fin Primary Radiator Launch Loads on Radiator . Failure Modes Cross Section Through Conduction Fin Radiator Duct . Cross Section Through Coolant Duct of Vapor Chamber . Radiator Cross Section Through Vapor Chamber Tube and Fin . Radiator Panel Matrix . Vapor C

37、hamber Radiator Design Layout . Vapor Chamber Fin Radiator Design Details Vapor Chamber Fin Radiator Assembly Sequence Step 1 . Vapor Chamber Fin Radiator Assembly Sequence Step 2 . Vapor Chamber Fin Radiator Assembly Sequence Step 3 . Vapor Chamber Fin Radiator Assembly Sequence Step 4 . Vapor Cham

38、ber Fin Radiator Assembly Sequence Step 5 . . Vapor. Chamber Fin Radiator Assembly Sequence Step 6 . Vapor Chamber Fin Radiator Assembly Sequence Step 7 . Vapor Chamber Fin Radiator Assembly Sequence Step 8 Conduction Fin Radiation Design Layout . . Conduction Fin Radiator Design Details Conduction

39、Fin Radiator Assembly Sequence Step 1 Conduction Fin Radiator Assembly Sequence Step 2 Conduction Fin Radiator Assembly Sequence Step 3 Conduction Fin Radiator Assembly Sequence Step 4 Conduction Fin Radiator Assembly Sequence Step 5 Conduction Fin Radiator Assembly Sequence Step 6 Capsule Vapor Cha

40、mber Test Unit . 216 “C“ Wick Design Vapor Chamber 217 Flow Schematic Vapor Chamber Test Unit Brayton Cycle Radiator. 218 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-View of Test Loop Heat Exchanger Assembly Vapor Chamber Test Unit Brayton Cycle

41、Radiator Disassembled Heat Exchanger and Heat Pipe. Vapor Chamber Tilted Position Water Heat Pipe (Cruciform Wick Configuration) Thermal . Flux Versus Evaporative AT. n-Pentane Heat Pipe (Cruciform Wick Configuration) Thermal Flux Versus Evaporative A T Benzene Heat Pipe (Cruciform Wick Configuratio

42、n) Thermal Flux Versus Evaporative A T Ammonia Heat Pipe (Cruciform Wick Configuration) Thermal Flux Versus Evaporative AT Test Data (Cruciform Wick Configuration) Condensing Heat Flux Versus Condensing AT Benzene Heat Pipe (“C“ Wick Configuration) Thermal Flux Versus Overall AT Provided by IHSNot f

43、or ResaleNo reproduction or networking permitted without license from IHS-,-,-LIST OF TABLES Basic Requirements Summary . Vapor Chamber Working Fluids Fluids Selected for Compatibility Tests with Aluminum Comparison of Radiator Weight and Area Reference Conditions and Specifications for the Brayton

44、Cycle Vapor Chamber Radiator Working Fluid Performance Parameters Aluminum Cratering Coefficients Incipient Damage Factor. a. For 2024-T6 Aluminum . Pertinent Properties of Potential Working Fluids for a Vapor Chamber Operating in the 20 to 350 Range Criteria for Selection of Aluminum Alloys Vapor C

45、hamber Performance Parameters for Candidate “High Temperature“ Working Fluids (at 250 Temp.) Vapor Chamber Performance Parameters for Alternate “High Temperature“ Worlcing Fluids (at 150F Temp.) Vapor Chamber Performance Parameters for Alternate “Low Temperature“ Working Fluids (at 150 Temp.) Vapor

46、Chamber Performance Parameters for Alternate “Low Temperature“ Working Fluids (at 40F Temp . ) . Comparison of Radiators Using Candidate Worlhg Fluid Combinations Capsule Filling Data . Calculated and Measured Heat Loss from Capsules Summary of Capsule Test Data . Survival Probability Distribution V

47、apor Chamber Radiator Characteristics Conduction Fin Radiator Characteristics . Effect of Ground Rules on Comparison Vapor Chamber Fluid Effect . Radiator Weight Summary (Lb) Ground Rules for Radiator Weight Comparison Provided by IHSNot for ResaleNo reproduction or networking permitted without lice

48、nse from IHS-,-,-LIST OF TABI,ES (CoualVd) Table -. Staardard Enventory Level Position Data Cruciform Wick Heat Pipes. . . . . . . . . . . . . . . . . . . . . . . . . . 227 Tilted, Reduced Inventory Operating Points Cruciform Wick. . . . 228 Benzene “C“ Wick Configuration Neat Pipe Performance (Tilted 1/2 Inch, 30 cc Inventory) . . . . . . . . . . . . . . . 229 Condensate Film Thickness . . . . . . . . . . . . . . . . . . 233 Fluid Selection . . . . . . . . .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1