1、1水的结晶水是地球上的重要物质,对于生命来说尤其重要。水有很多特殊的性质,例如水结成冰后体积不但不减小反而增大,水在4C 时密度最大,水的比热和汽化热等都比一般物质大,等等。这些现象都与水分子间的相互作用,即成键情况有密切的关系,下面就此问题作些浅显的讨论。图4-库-8 冰I h的结构示意水分子是极性分子,两个 HO 键成1045角。水分子间的相互作用力是范德瓦耳斯力,但相互作用方式有其特殊性。当它结成晶体(即冰)时,一个水分子的氢原子与另一个水分子的氧原子相互吸引,组成一种特殊的晶体结构,如图4-库-8所示。图中大圆圈表示氧原子,小圆圈表示氢原子,在这里,每一个氢原子一端与氧原子组成共价键(
2、用短实线表示),而另一端则与另一个水分子中的氧原子靠范德瓦耳斯力连接,它们之间的键合方式称为“氢键”,在图中用虚线表示。由于氢键本质上仍是范德瓦耳斯力,它的强度远比另一端的共价键要弱得多,因此氢原子并不处于两个氧原子的正中,而是靠氢键连接的两个原子距离较远,在图中虚线画得都比实线长,就是表示这个信息。冰的晶体属六角晶系,它是一种比较特殊的晶体结构,每一个水分子都与另外三个水分子相连接(每一个水分子的两个氢原子分别与另两个水分子的氧原子连接,而它的氧原子则与第三个水分子的某一个氢原子连接),由于氢键的特殊方向性,使得冰的晶体结构内部很“空旷”,远不如金属晶体那样密集,因此在水结成冰的过程中,体积
3、不是像大多数物质那样缩小,反而要胀大,即冰的密度比液态水的密度要小。当冰在0C 时吸热熔化成水后,水中的氢键结构只有约15%断裂,其余85%仍然保留。但这15%的氢键解体,就使得体积明显缩小(约缩小1/10)。当水的温度逐渐升高时,水中的氢键结构逐渐解体,到20C 时水中的氢键约还有一半,到了100C 沸点时,水中仍有约20%的氢键结构存在。随着温度的逐渐升高,一方面是氢键结构的解体,它造成水的体积缩小,而另一方面热膨胀现象又造成水的体积胀大,这两种因素都在起作用。从0C 开始升温的初始阶段,氢键的解体起主要作用,因此水的体积随温度的升高而减小,在4C 时体积变得最小而密度最大,4C 以后,温
4、度再升高,起主要作用的就是热膨胀了,因此从4C 以后,水也像大多数物2质一样热胀冷缩。氢键虽然本质上是范德瓦耳斯力,但比一般的范德瓦耳斯键要强一些。冰在升华直接变成水蒸气的过程中,要吸收热量,称为升华热,吸收的热量中的大部分是使氢键解体,小部分则是克服一般范德瓦耳斯键的作用,前者约占3/4,后者只占1/4。具体地说,在0C 时冰的升华热约是510 kJ/mol,其中瓦解氢键需要37 6 kJ/mol,其余134 kJ/mol则是克服一般范德瓦耳斯键所需的能量。正因为水在温度升高的过程中,氢键要逐渐解体,而瓦解氢键需要较大的能量,因此水的比热比一般物质都大。水的汽化热和升华热也比一般物质要大,其
5、原因也是因为需要克服氢键的作用。氢键在生命过程中起着重要作用,具体地体现在液态水身上。水是生命的重要源泉,前面说到的水的几个特性,对于生命都极为重要。水有较大的比热和汽化热,使得水成为地球上的热量调节库。我们地球的日夜温度变化和季节温度变化都是较小的,这对于生命的生长发育极为有利;水在4C 时密度最大,在4C 以下继续冷却以至结冰的过程中,体积要膨胀,对流现象停止,这使得江河湖海在冬天结冰时,从上表面开始结冰,而底层的水则仍然保持4C 的温度不变,这样水中的动、植物都不会被冻死。水的这一切特性,都与氢键有关,这正是我们说氢键在生命过程中起着重要作用的原因。一般说来,任何一种物质,在温度、压强等
6、发生变化时,都会呈现不同的物态,研究物态变化对于深入了解物质的结构及性质,对于研制新材料及新物质,都具有很大的现实意义。熔化和凝固物质由固相转变为液相,叫做熔化;由液相转变为固相,叫做凝固。在一定的压强下,晶体要升高到一定温度才发生熔化,这个温度叫做熔点,其相反过程即由液相转变为固相的温度叫做凝固点。在熔化或凝固过程中,虽然温度保持不变,但要吸收或放出相变潜热。单位质量某种物质熔化成同温度液体时吸收的热量,叫做熔化热;相反过程放出的热量,叫做凝固热;熔化热等于凝固热。在熔化和凝固的过程中既有固相,也有液相,加热则向液相转变,放热则向固相转变。因此,熔点(凝固点)就是在一定压强下固液两相平衡共存
7、的温度。晶体具有一定熔点,决定于晶体具有远程有序的点阵结构,破坏这种结构所需的能量是一定的。当温度升到一定数值,平均热运动能达到晶体的结合能时,一处的结构能够被解离(熔化),另一处在同一温度下同样能够被解离,这个温度就是熔点。非晶体不具有远程有序的特点,只具有近程有序的微观结构,破坏不同的微观结构需要不同的能量,因3而表现为随温度升高而逐渐软化和熔化。熔化时所需的熔化热主要用于破坏晶体的点阵结构,因此熔化热可以用来衡量晶体结合能的大小。晶体的凝固与熔化构成晶体的物质微粒是按一定的规则排列的,这些物质微粒在一定的位置附近做无规则振动,一般不能改变其平衡位置,因此它们都具有一定的体积和一定的形状。
8、晶体物质吸热温度升高,物质微粒的无规则振动加剧。到一定程度(温度达到熔点),再继续吸收热量,物质微粒的能量能够克服相互间的作用力而离开各自的平衡位置,空间点阵开始解体,这就是熔化。反过来,液体向外放热而温度降低,物质微粒的无规则振动减弱,到一定程度,相互间的作用力将把它们束缚在一定的平衡位置上,使得它们不再能随意移动,这些物质微粒将重新按一定的规则排列起来,这就是凝固,更准确地说这就是晶体的结晶过程。熔化需要吸收能量(吸热),而凝固需要放出能量(放热),从这点来说,熔化与凝固确是相反的过程,但是晶体的熔化与凝固是不是完全可逆的过程呢?再说具体点:熔点是晶体熔化时的温度,晶体温度升高到熔点,只要
9、再继续从外界吸收热量,晶体就开始熔化,熔化过程中温度保持不变,直到全部熔化完以后温度才会继续升高,反过来,液体的温度降低到达熔点时的温度,再继续放热,是否就一定开始结晶呢?答案是否定的。在实际实验中常常可以观察到纯净的液体温度已经降低到熔点温度以下而液体仍未结晶的现象,这种液体称为“过冷液体”,过冷液体是一种亚稳态。最早发现这种现象的是温度计的发明者,德国人华伦海特。一次他为了观察水的结晶现象,特意把一个玻璃瓶洗得非常干净,装满水并塞紧瓶塞,放到冬天的室外冻一夜,当次日清晨室外已是冰垂屋檐时,发现瓶中的水没有一点结晶。当时他非常惊奇,拿起瓶子并拔起瓶塞,想仔细观察一下,却突然像变魔术一样,整瓶
10、水在刹那间就全部变成了冰针。经过认真研究,得知只要纯净的水“安静”地放置在清洁的容器里,温度慢慢降低到熔点温度以下,仍不会结冰,而这些处于过冷状态的液体,只要受到扰动,就会很快结晶。据说有一位英国的物理学家把一瓶水杨酸苯脂液体在过冷的环境下安静地放置了很久而未结晶,他非常得意,想把这一珍品展示给前来听课的学生,学生们正期盼着观赏这一奇迹时,却由于他在移动瓶子的过程中的一点轻微振动,瞬间就全部变成了晶体。学生们虽然十分遗憾,却也真正明白了过冷液体只是一种亚稳态的道理。结晶过程是比较复杂的,除了要降到熔点温度以下,继续向外放热以外,还有一个必要条件,就是液体中存在晶核。晶核就是结晶中心,晶体就以晶
11、核为中心逐渐“生长”。如果液体中只有一个晶核,结晶完成以后就形成单晶体;如果有多个晶核,液体分子分别以这些晶核为中心“生长”出多个晶体,每个晶体内分子的排列都规则有序,而这多个晶体之间却是无序的,这就是多晶体。能作为晶核的可以是残存在液体中的细小晶粒,也可以是尘埃一类的微小异物。纯净的液体常处于过冷状态而不结晶,就是因为缺少晶核。当然,过冷的液体并不是绝对不能结晶,只是不容易结晶。由于分子运动的不均匀性(称为涨落现象),某些分子可能会互相靠近而自发形成小的晶粒,从而成为结晶的中心。如果过冷液体受到小的扰动,就大大增加了自发形成晶核的可能性,从而很快完成结晶过程。4如果往过冷液体中撒一些细小灰尘
12、,过冷液体也会在极短时间内完成结晶过程。图4-库-11 晶体凝固图象对于化学纯的能够结晶的液体,让它慢慢散热,其温度随时间变化规律可用图4-库-11所示的图象表示。图中 B 点对应着熔点的温度值,如果液体内存在充足的晶核,它会沿图中虚线 BEC 变化,即在结晶过程中保持温度不变,直到全部结晶完成,温度才继续下降。但对缺少晶核的纯净液体,它将沿着实线 BDE 变化,即温度先下降到熔点温度以下,成为过冷液体,待自发形成晶核并大量结晶以后,温度回到熔点温度,只有很小一段(图中 EC段)保持这个温度不变,到达 C 点即完成了结晶过程,CF 段已经是晶体向外放热而温度下降的过程了。如果液体散热过快,液体
13、来不及结晶其温度已经降到很低而成为固体,则这时的固体是非晶体,或说是玻璃态固体。以前很长时间里人们总以为只有少数物质才能凝固成为玻璃态固体,而像金属这类物质则只能以晶体的形式存在,这是不对的。大量的实验证明,在材料的熔点以下还有一个“玻璃化点”,如果液体冷却到熔点以下、玻璃化点以上的温度区间,液体就会凝固成为晶体,而如果液体的冷却速度很快,温度能够很快越过熔点之下、玻璃化点之上这一“危险区域”,降低到玻璃化点以下,则过冷液体将凝固成为玻璃态固体。现在已经能够制成玻璃态金属,而工艺的关键是“快速冷却”。图4-库-12所示是一种制造玻璃态金属薄带的装置示意图。熔化的金属从石英管的细孔中喷到正在快速
14、旋转着的冷铜辊表面,铜辊是热的良导体,并且与巨大的散热装置紧密相连,喷出的液体接触铜辊后降温的速度很快,可以达到1 000 K/ms,因此温度很快就降低到玻璃化点以下,从而凝固为玻璃态的金属薄带。玻璃态金属具有一般金属的高强度,但弹性比一般金属更好,电阻率也更大,特别是具有良好的防辐射性能,因此在宇航、核工业、可控热核反应等领域中有着特殊的应用前景。5图4-库-12 制造玻璃态金属的装置由此说来,晶体的凝固过程比熔化过程要复杂得多,二者并不是真正互逆的。下面简单谈谈关于溶液的结晶问题,请注意这里的结晶与上面所说的晶体的凝固是不同的概念。我们以水的食盐溶液为例,海水就是常见的水的食盐溶液(海水中
15、的其他成分数量都很少,可以忽略)。这里有两个方面的问题,一方面是溶质(海水中的盐)的结晶,另一方面是溶剂(水)的结晶。溶质的结晶。水中溶有食盐时,如果盐的数量很少,再加些盐仍会继续溶解,这叫做未饱和溶液;如果水中食盐数量很多,再加入盐也不会溶解,则称为饱和溶液。海水是盐的未饱和溶液。使未饱和溶液变为饱和溶液的办法一个是增加溶质,一个是降低温度,再一个则是蒸发溶剂。当溶液已经成为饱和溶液以后,如果再继续降低温度,或者蒸发溶剂,如果内部没有晶核存在,溶液就成为过饱和溶液,如果有晶核存在,溶质就会析出而结晶。由海水晒制食盐就是用蒸发水分的办法使盐结晶析出的。溶剂的结晶。以海水为例,冬天当温度已经降到
16、结冰温度以下时,水中的食盐仍未达到饱和,这时再放出热量,海水就要结冰,结成的冰块(大的成为冰山)漂浮在海面上。把海水中的冰块融化,发现是淡水,不含食盐。这说明这个过程结成的是单纯溶剂的晶体,而把溶质完全排除。淡水是人类生存的重要资源,尤其对一些严重缺水的国家和地区,淡水缺乏是制约经济发展和生存环境恶化的重要原因,淡化海水可能是解决这一问题的有效办法,但海水的淡化非常困难,经济上很不合算,于是有人提出把南极的冰山拖到缺水的中东地区,再把冰山融化而取得淡水。当然这在技术上也有一些困难,经济上是否合算也还需进一步论证,对环境的影响更应该深入研究,但总体来讲仍有诱人的前景。目前已进行过实验,还没有进入大规模实施阶段。