1、第3讲 带电粒子在复合场中 的运动,-2-,网络构建,要点必备,-3-,网络构建,要点必备,1.做好“两个区分” (1)正确区分重力、 、 的大小、方向特点及做功特点。 、 做功只与初、末位置有关,与路径无关,而 不做功。 (2)正确区分“电偏转”和“磁偏转”的不同。“电偏转”是指带电粒子在电场中做 运动,而“磁偏转”是指带电粒子在磁场中做 运动。 2.抓住“两个技巧” (1)按照带电粒子运动的先后顺序,将整个运动过程划分成不同特点的小过程。 (2)善于画出几何图形处理 ,要有运用数学知识处理物理问题的习惯。,电场力,洛伦兹力,重力,电场力,洛伦兹力,类平抛,匀速圆周,边、角关系,-4-,1,
2、2,3,1. (2017全国卷)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里。三个带正电的微粒a、b、c电荷量相等,质量分别为ma、mb、mc。已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动。下列选项正确的是( ) A.mambmc B.mbmamc C.mcmamb D.mcmbma 考点定位:带电粒子在叠加场中的运动 命题能力点:侧重考查理解能力和分析综合能力 物理学科素养点:科学思维 解题思路与方法:微粒a、b、c都受到重力、电场力和洛伦兹力作用,a做匀速圆周运动,说明重力和电场力的合
3、力为零;b、c做匀速直线运动,说明其受到的三个力的合力为零。,B,-5-,1,2,3,-6-,1,2,3,2. (2016全国卷)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为( ) A.11 B.12 C.121 D.144 考点定位:带电粒子在组合场中的运动 命题能力点:侧重考查理解能力和分析综合能力 物理学科素养点:科学思维 解题思路
4、与方法:带电粒子在匀强磁场中做圆周运动的向心力由洛伦兹力提供,根据动能定理求出带电粒子出电场进磁场的速度。本题关键是要理解两种粒子在磁场中运动的半径不变。,D,-7-,1,2,3,-8-,1,2,3,3.(2018全国卷)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行,一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入
5、射的速度从N点沿y轴正方向射出。不计重力。(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M点入射时速度的大小; (3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为 ,求该粒子的比荷及其从M点运动到N点的时间。,-9-,1,2,3,考点定位:带电粒子在组合场中的运动 命题能力点:侧重考查理解能力和分析综合能力 物理学科素养点:科学思维 解题思路与方法:在组合场中的运动要分阶段处理,每一个运动建立合理的公式即可求出待求的物理量。,-10-,1,2,3,解析 (1)粒子运动的轨迹如图(a)所示。(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)图(a),-11-,1,2,
6、3,(2)粒子从电场下边界入射后在电场中做类平抛运动。设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为(见图(b),速度沿电场方向的分量为v1,根据牛顿第二定律有图(b),-12-,1,2,3,qE=ma 式中q和m分别为粒子的电荷量和质量。由运动学公式有 v1=at l=v0t v1=vcos 粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB= 由几何关系得l=2Rcos 联立式得v0= ,-13-,1,2,3,-14-,1,2,3,【命题规律研究及预测】 分析高考试题可
7、以看出,每年都出现带电粒子在复合场中的运动问题,考题中主要借助复合场背景考查运动学公式和动能定理及处理曲线运动方法。题型一般为选择题、计算题。 在2019年的备考过程中要重视带电粒子在复合场中做曲线运动的训练。,-15-,考点一,考点二,考点三,带电粒子在组合场中的运动(L) 规律方法 带电粒子在组合场中运动的处理方法 1.明性质:要清楚场的性质、方向、强弱、范围等。 2.定运动:带电粒子依次通过不同场区时,由受力情况确定粒子在不同区域的运动情况。 3.画轨迹:正确地画出粒子的运动轨迹图。 4.用规律:根据区域和运动规律的不同,将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处
8、理。 5.找关系:要明确带电粒子通过不同场区的交界处时速度大小和方向的关系,上一个区域的末速度往往是下一个区域的初速度。,-16-,考点一,考点二,考点三,-17-,考点一,考点二,考点三,思维点拨氕核和氘核在电场中做类平抛运动,在磁场中做圆周运动,对每一个运动利用合适的公式即可求出待求的物理量。,-18-,考点一,考点二,考点三,-19-,考点一,考点二,考点三,-20-,考点一,考点二,考点三,-21-,考点一,考点二,考点三,-22-,考点一,考点二,考点三,1. (2018全国卷)如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入
9、匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直。已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l。不计重力影响和离子间的相互作用。求:(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比。,-23-,考点一,考点二,考点三,-24-,考点一,考点二,考点三,-25-,考点一,考点二,考点三,2. (2018山西吕梁一模)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场。一粒子源固定在x轴上坐标为(-L,0)的A点。粒
10、子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用)。已知=45,求: (1)匀强电场的电场强度E的大小与C点的坐标; (2)电子在磁场中运动的时间t; (3)圆形磁场的最小面积Smin。,-26-,考点一,考点二,考点三,-27-,考点一,考点二,考点三,-28-,考点一,考点二,考点三,3. (2018河南郑州预测)如图所示,矩形区域abcdef分为两个矩形区域,左侧区域充满匀强电场,方向竖直向上,右侧区域充满匀强磁场,方向垂直纸面
11、向外,be为其分界线,af=L,ab=0.75L,bc=L。一质量为m、电荷量为e的电子(重力不计)从a点沿ab方向以初速度v0射入电场,从be边的中点g进入磁场。(已知sin 37=0.6,cos 37=0.8)(1)求匀强电场的电场强度E的大小; (2)若要求电子从cd边射出,求所加匀强磁场磁感应强度的最大值Bm; (3)调节磁感应强度的大小,求cd边上有电子射出部分的长度。,-29-,考点一,考点二,考点三,-30-,考点一,考点二,考点三,-31-,考点一,考点二,考点三,-32-,考点一,考点二,考点三,带电粒子在叠加场中的运动(H) 规律方法 “两分析、一应用”巧解复合场问题 1.
12、受力分析,关注几场叠加。 (1)磁场、重力场并存,受重力和洛伦兹力; (2)电场、重力场并存,受重力和电场力; (3)电场、磁场并存(不计重力的微观粒子),受电场力和洛伦兹力; (4)电场、磁场、重力场并存,受电场力、洛伦兹力和重力。 2.运动分析,典型运动模型构建。 带电物体受力平衡,做匀速直线运动;带电物体受力恒定,做匀变速运动;带电物体受力大小恒定且方向指向圆心,做匀速圆周运动;带电物体受力方向变化复杂,做曲线运动等。,-33-,考点一,考点二,考点三,3.选用规律,两种观点解题。 (1)带电物体做匀速直线运动,则用平衡条件求解(即二力或三力平衡); (2)带电物体做匀速圆周运动,应用向
13、心力公式或匀速圆周运动的规律求解; (3)带电物体做匀变速直线或曲线运动,应用牛顿运动定律和运动学公式求解; (4)带电物体做复杂的曲线运动,应用能量守恒定律或动能定理求解。,-34-,考点一,考点二,考点三,【典例2】(2017全国卷)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场。自该区域上方的A点将质量均为m、电荷量分别为q和-q(q0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍。不计空气
14、阻力,重力加速度大小为g。求:(1)M与N在电场中沿水平方向的位移之比; (2)A点距电场上边界的高度; (3)该电场的电场强度大小。,-35-,考点一,考点二,考点三,思维点拨把小球M、N分解到水平方向和竖直方向分别研究。小球M、N在进入电场前做平抛运动,以相同的水平速度进入电场,进入电场的竖直速度也相同,进入电场后在竖直方向的运动性质相同,在电场中的运动时间相等。小球M进入电场后在水平方向上做匀加速直线运动,小球N进入电场后在水平方向上做匀减速直线运动。,-36-,考点一,考点二,考点三,-37-,考点一,考点二,考点三,-38-,考点一,考点二,考点三,-39-,考点一,考点二,考点三,
15、4. (多选)(2018河南安阳二模)如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M点水平射入场区,经一段时间运动到N点,关于小球由M到N的运动,下列说法正确的是( ) A.小球可能做匀变速运动 B.小球一定做变加速运动 C.小球动能可能不变 D.小球机械能守恒,BC,-40-,考点一,考点二,考点三,解析 小球从M到N,在竖直方向上发生了偏转,受到竖直向下的重力、竖直向上的电场力以及洛伦兹力,由于速度方向变化,则洛伦兹力方向变化,所以合力方向变化,故不可能做匀变速运动,一定做变加速运动,A错误、B正确;若电场力和重力等大反向,则运动过程中电场力和重
16、力做功之和为零,而洛伦兹力不做功,所以小球的动能可能不变,C正确;小球运动过程中,电场力做功,故小球的机械能不守恒,D错误。,-41-,考点一,考点二,考点三,5. (2018安徽蚌埠一质检)如图所示,在竖直平面内的xOy坐标系中,有一个边界为圆形的匀强磁场,磁感应强度为B,磁场方向垂直xOy平面向里,其边界分别过原点O(0,0)、点P(L,0)和点Q(0, ),第一象限内同时还存在一个竖直方向的匀强电场,一比荷为k的带电小球以某一初速度平行y轴正方向从P点射入磁场做匀速圆周运动,并从Q点离开磁场,重力加速度为g,求:(1)匀强电场的方向和电场强度E的大小; (2)小球在磁场中运动的速率和时间
17、t。,-42-,考点一,考点二,考点三,-43-,考点一,考点二,考点三,6. (2018山西长治、运城、大同、朔州、阳泉五地联考)如图,A、B、C为同一平面内的三个点,在垂直于平面方向加一匀强磁场,将一质量为m、带电荷量为q(q0)的粒子以初动能Ek自A点垂直于直线AC射入磁场,粒子依次通过磁场中B、C两点所用时间之比为13。若在该平面内同时加匀强电场,从A点以同样的初动能沿某一方向射入同样的带电粒子,该粒子到达B点时的动能是初动能的3倍,到达C点时的动能为初动能的5倍。已知AB的长度为l,不计带电粒子的重力,求: (1)磁感应强度的大小和方向; (2)电场强度的大小和方向。,-44-,考点
18、一,考点二,考点三,解析 (1)设AC中点为O,由题意可知AC长度为粒子在磁场中做匀速圆周运动的半径,连接OB。因为粒子在运动过程中依次通过B、C两点所用时间之比为13,所以AOB=60,圆周运动的半径r=l,因为粒子带正电,根据洛伦兹力受力方向可以判断,磁感应强度B的方向为垂直纸面向外。,-45-,考点一,考点二,考点三,(2)加上电场后,只有电场力做功,从A到B:qUAB=3Ek-Ek 从A经B到C:qUAC=5Ek-Ek UAC=2UAB 在匀强电场中,沿任意一条直线电势的降落是均匀的,可以判断O点与B点是等电势的,所以,电场强度E与OB垂直;因为由A到B电场力做正功,所以电场强度的方向
19、与AC成30夹角斜向上方。设电场强度的大小为E,有:UAB=Elcos 30,-46-,考点一,考点二,考点三,带电粒子在交变电磁场中的运动(L) 规律方法 1.变化的电场或磁场往往具有周期性,粒子的运动也往往具有周期性。这种情况下要仔细分析带电粒子的运动过程、受力情况,弄清楚带电粒子在变化的电场、磁场中各处于什么状态,做什么运动,画出一个周期内的运动轨迹的草图。 2.粒子运动的周期一般与电场或磁场变化的周期有一定联系,可把两种周期的关系作为解题的突破口。,-47-,考点一,考点二,考点三,【典例3】如图甲所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所
20、示(规定垂直纸面向里为磁感应强度的正方向、沿y轴正向为电场强度的正方向)。在t=0时刻由原点O发射初速度大小为v0,方向沿y轴正方向的带负电粒子。已知v0、t0、B0,粒子的比荷为 ,不计粒子的重力。,-48-,考点一,考点二,考点三,(1)t=t0时,求粒子的位置坐标; (2)若t=5t0时粒子回到原点,求05t0时间内粒子距x轴的最大距离; (3)若粒子能够回到原点,求满足条件的所有E0值。,-49-,考点一,考点二,考点三,-50-,考点一,考点二,考点三,(3)如图所示,设带电粒子在x轴上方做圆周运动的轨道半径为r1,在x轴下方做圆周运动的轨道半径为r2,由几何关系可知,要使粒子经过原
21、点,则必须满足,-51-,考点一,考点二,考点三,7.(2018重庆期末抽测)如图甲所示,在xOy平面的第象限内有沿+x方向的匀强电场E1,第、象限内同时存在着竖直向上的匀强电场E2和垂直纸面的匀强磁场B,E2=2.5 N/C,磁场B随时间t周期性变化的规律如图乙所示,B0=0.5 T,垂直纸面向外为磁场正方向。一个质量m=510-5 kg、电荷量q=210-4 C的带正电液滴从P点(0.6 m,0.8 m)以速度v0=3 m/s沿-x方向入射,恰好以沿-y方向的速度v经过原点O后进入x0的区域,t=0时液滴恰好通过O点,g取10 m/s2。求:,-52-,考点一,考点二,考点三,(1)电场强
22、度E1和液滴到达O点时速度的大小v; (2)液滴从P开始运动到第二次经过x轴所经历的时间t总; (3)若从某时刻起磁场突然消失,发现液滴恰好以与+y方向成30角的方向穿过y轴后进入x0的区域,试确定液滴穿过y轴时的位置。,-53-,考点一,考点二,考点三,-54-,考点一,考点二,考点三,解析 (1)液滴在x0的区域内受竖直向下的重力和水平向右的电场力的作用, 液滴在竖直方向上做自由落体运动: y= gt2 v=gt 解得:t=0.4 s,v=4 m/s 液滴在水平方向上做匀减速运动 v0=at qE1=ma 解得:E1=1.875 N/C,-55-,考点一,考点二,考点三,(2)液滴进入x0
23、的区域后,由于qE2=mg,液滴运动轨迹如图1所示,其做圆周运动的大、小圆半径分别为r1、r2,运动周期分别为T1、T2。,图1,-56-,考点一,考点二,考点三,(3)情形一:若磁场消失时,液滴在x轴上方,如图2所示:,图2,-57-,考点一,考点二,考点三,情形二:若磁场消失时,液滴在x轴下方,如图3所示:,图3,-58-,考点一,考点二,考点三,8.(2018福建泉州三模)如图甲所示,竖直线MN左侧存在水平向右的匀强电场,MN右侧存在垂直纸面的均匀磁场,磁感应强度B随时间t变化规律如图乙所示,O点下方竖直距离d=23.5 cm处有一垂直于MN的足够大的挡板。现将一重力不计、比荷 =106
24、 C/kg的正电荷从O点由静止释放,经过t= 10-5 s后,电荷以v0=1.5104 m/s的速度通过MN进入磁场。规定磁场方向垂直纸面向外为正,t=0时刻电荷第一次通过MN。求:,-59-,考点一,考点二,考点三,(1)匀强电场的电场强度E的大小; (2)t= 10-5 s时刻电荷与O点的竖直距离d; (3)电荷从O点出发运动到挡板所需时间t。(结果保留两位有效数字),答案 (1)7.2103 N/C (2)4 cm (3)1.110-4 s,-60-,考点一,考点二,考点三,图1,-61-,考点一,考点二,考点三,(3)电荷从第一次通过MN开始计时,其运动周期为T= 10-5 s,图2 根据电荷的运动情况可知,电荷到达挡板前运动的完整周期数为4个,此时电荷沿MN运动的距离s=4d=16 cm,则最后s=7.5 cm的距离如图2所示, 有r1+r1cos =s 解得cos =0.5,则=60,