1、- 1 -“长汀、上杭、武平、连城、漳平、永定一中”六校联考20182019 学年第一学期半期考高一数学试题(考试时间:120 分钟 满分 150 分)一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.)1.若集合 A ,则 ( )12xACRA. B. 或12x或C. D. x2.已知集合 , ,则 ( )2,0xMy2|lgNxyxMNA. B. C. D. 1,22,1,3下列函数既是奇函数,又在区间 上是增函数的是( ))(A. B. C. D.1xy2xyxylg3xy4三个数 , , 之间的大小关系是( )34.0a.lnb4.03cA c B a C cab D
2、acb5已知函数 f(x)Error!则满足 f(a) 的 a 的取值范围是( )12A(,1) B(0, ) 2C(,1)(0, ) D(,1)(0,2)26. 已知函数 ,其定义域是 ,则下列说法正确的是( )1()fx8,4A 有最大值 ,无最小值 B 有最大值 ,最小值53()fx537C 有最大值 ,无最小值 D 有最大值 2,最小值()fx77 .已知函数 f(x) 的图象关于原点对称, g(x)ln(e x1) bx 是偶函数,则24x a2xlogab( )A1 B C1 D12 148. 函数 的图象大致是( )21)(xf- 2 -A B C D9. 已知函数 = 满足对任
3、意 x1 x2,都有 成立,fx25,14,ax 0)(21xf那么 的取值范围是( )aA(0,1) B C(0,2) D0,30,110.设函数 ,则函数 的定义域为( xxf2lg xffxg2)()A. B. 4,0,4,1,C. D. 21211具有性质: 的函数,我们称为满足“倒负”变换的函数,下列函数:ffx ; ; 其中满足“倒负”变换的函数是( )1yx1yx,01,xyA B C D12.已知函数 与 的图象关于 y 轴对称,当函数 和 在区间yfxyFx yfxyFx同时递增或同时递减时,把区间 叫做函数 的“不动区间”,若区间,ab,abfx为函数 的“不动区间”,则实
4、数 t 的取值范围是( )122xtA B C D0.1,1,21,24,二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分.)- 3 -13、函数 y ax3 1( a0 且 a1)的图象必经过点_ log(2)a14.已知 ,那么函数 f( x)的解析式为_1f15. 设奇函数 fx在 0,上为增函数,且 10f,则不等式 0fx的解集为_16 已知函数 若函数 恰有 6 个零点,则实数 的取0,245xxf xafy)( a值范围为_三、解答题(本大题共 6 小题,共 70 分.);21 630.253437. .5()8 ( 本 题 分 ) 计 算 :( ).7log23
5、4(2)log7lll18(本题 12 分) 已知集合 A=x| 2 x-1128,B=y|y=log 2x,x ,32,14 18(1)求集合 AB;(2)若 C=x|m+1x2m-1,C(AB),求实数 m 的取值范围19 (本小题 12 分)已知函数 在其定义域上为奇函数. 20xaf(1)求 的值;(2)判断函数 的单调性,并给出证明.af- 4 -20.(本题 12 分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点研究表明:“活水围网”养鱼时,某种鱼在一定条件下,每尾鱼的平均生长速度 v(单位:千克/年)是养殖密度 x(单位:尾/立方米)的函数当 x 不超过 4 尾/立方米时
6、, v 的值为 2 千克/年;当4 x20 时, v 是 x 的一次函数,当 x 达到 20 尾/立方米时,因缺氧等原因, v 的值为 0 千克/年(1)当 02m-1, m0,f(x 2)f(x 1)f(x 2x 1)f(x2)f(x)是 R 上的减函数7 分(3)f(x)为奇函数,整理原式得 f(ax2+x+2)x2-ax 即( a-1)x2+(a+1)x+20当 a1 时,原不等式的解为 x-1;当 a1 时,原不等式化为( a-1)( x+ )(x+1)0 即(x+ )(x+1)01212a若 a3,原不等式化为,(x+1) 20,原不等式的解为 x-1若 a3,则- -1,原不等式的解为 x- 或 x-1 或 x0 即(x+ )(x+1)-1,原不等式的解为-1-1;当 1-1 或 x3 时,原不等式的解集为x|x- 或 x-1.12 分12a