ISO 21014-2006 Cryogenic vessels - Cryogenic insulation performance《低温容器 低温绝热性能》.pdf

上传人:ideacase155 文档编号:1252323 上传时间:2019-09-02 格式:PDF 页数:22 大小:511KB
下载 相关 举报
ISO 21014-2006 Cryogenic vessels - Cryogenic insulation performance《低温容器 低温绝热性能》.pdf_第1页
第1页 / 共22页
ISO 21014-2006 Cryogenic vessels - Cryogenic insulation performance《低温容器 低温绝热性能》.pdf_第2页
第2页 / 共22页
ISO 21014-2006 Cryogenic vessels - Cryogenic insulation performance《低温容器 低温绝热性能》.pdf_第3页
第3页 / 共22页
ISO 21014-2006 Cryogenic vessels - Cryogenic insulation performance《低温容器 低温绝热性能》.pdf_第4页
第4页 / 共22页
ISO 21014-2006 Cryogenic vessels - Cryogenic insulation performance《低温容器 低温绝热性能》.pdf_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、 Reference number ISO 21014:2006(E) ISO 2006INTERNATIONAL STANDARD ISO 21014 First edition 2006-08-01 Cryogenic vessels Cryogenic insulation performance Rcipients cryogniques Performances disolation cryognique ISO 21014:2006(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordan

2、ce with Adobes licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobes licen

3、sing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing

4、. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. ISO 2006 All rights reserved. Unless otherwise specified, no part of this publ

5、ication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISOs member body in the country of the requester. ISO copyright office Case postale 56 CH-1211 Gene

6、va 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyrightiso.org Web www.iso.org Published in Switzerland ii ISO 2006 All rights reservedISO 21014:2006(E) ISO 2006 All rights reserved iii Contents Page Foreword iv Introduction v 1 Scope . 1 2 Terms and definitions. 1 3 General conditions f

7、or all methods 2 4 Measuring the heat leak by the loss of product method 3 4.1 General. 3 4.2 Test procedure 3 4.3 Determination of the heat leak in units of energy per unit time 4 4.4 Determination of the heat leak as a percentage loss of product per 24 h 4 5 Determination of the holding time for o

8、pen systems from heat-leak data . 4 6 Holding times for closed systems 5 6.1 Determination of the equilibrium holding time from heat-leak data 5 6.2 Calculation of the equilibrium holding time from heat-leak data 5 6.3 Static experimental holding time 6 7 Test report . 7 Annex A (normative) Conversi

9、on of measured volumetric gaseous flow to mass flow 8 Annex B (normative) Correction of measured mass flow rate with regard to deviation from reference conditions. 9 Annex C (normative) Equivalent loss determination for products other than the test product 14 Bibliography . 15 ISO 21014:2006(E) iv I

10、SO 2006 All rights reservedForeword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested

11、 in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Comm

12、ission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technic

13、al committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO sha

14、ll not be held responsible for identifying any or all such patent rights. ISO 21014 was prepared by Technical Committee ISO/TC 220, Cryogenic vessels. ISO 21014:2006(E) ISO 2006 All rights reserved v Introduction Traditionally, there have been different methods of defining the insulation performance

15、 of cryogenic vessels. It is therefore necessary to harmonize such methods for different cryogenic vessels. Figure 1 shows a logic diagram to help in the understanding of this International Standard. Figure 1 Logic diagram INTERNATIONAL STANDARD ISO 21014:2006(E) ISO 2006 All rights reserved 1 Cryog

16、enic vessels Cryogenic insulation performance 1 Scope This International Standard defines practical methods for determining the heat-leak performance of cryogenic vessels. The methods include measurement on both open and closed systems. This International Standard neither specifies the requirement l

17、evels for insulation performance nor when the defined methods should be applied. These requirements may be defined in design or operational standards/regulations. 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. 2.1 open system during test system

18、kept at a constant pressure (e.g. atmospheric pressure) in which the gas produced by the evaporation of the test fluid is continuously released to atmosphere 2.2 closed system during test system in which the mass of the contents is kept constant with no input or output of product 2.3 heat-leak rate

19、quantity of heat transferred per unit time from the ambient air to the contents of the inner vessel NOTE In an open system, the heat leak causes a loss of product; in a closed system, it causes a rise in pressure. 2.4 holding time open system time expected to elapse, for a specified degree of fillin

20、g, from initial filling level until the vessel is empty (no more liquid) calculated from heat-leak data 2.5 holding time closed system time elapsed, for a specified degree of filling, from establishing the initial filling condition until the pressure has risen, due to heat leak, to the set pressure

21、of the pressure-limiting device NOTE 1 For transportable vessels, this holding time is determined without the effects of stratification. NOTE 2 A pressure-limiting device can be a safety valve, a rupture disc, a back-pressure regulator, or any other device installed to limit the system pressure unde

22、r normal operating conditions. 2.5.1 equilibrium holding time holding time calculated from a specified heat leak assuming that liquid and vapour are constantly in equilibrium (without stratification) ISO 21014:2006(E) 2 ISO 2006 All rights reserved2.5.2 longest equilibrium holding time equilibrium h

23、olding time calculated from heat-leak data for a vessel when filled with the quantity of product giving the longest holding time 2.5.3 static experimental holding time time it takes starting from atmospheric pressure, or from a stated pressure in the case of fluids where the starting pressure cannot

24、 be atmospheric pressure (e.g. 10 bar for CO 2 ), to reach the set pressure of the pressure-limiting device with the tank initially filled to its maximum allowable filling mass 2.6 maximum allowable filling mass initial mass that results in the tank becoming hydraulically full (98 % for all fluids e

25、xcept helium and 100 % for helium) at the point that the pressure-limiting device operates NOTE For fluids in a supercritical condition, the maximum allowable filling mass will be a function of the holding time and will be stated. 3 General conditions for all methods The measurements specified in th

26、is International Standard shall be carried out under the following conditions. 3.1 The cryogenic fluid used for testing shall be agreed upon between the involved parties. Liquid nitrogen may normally be used, except in cases where the vessel to be tested is designed for a specific cryogenic fluid. 3

27、.2 The liquid and gaseous phases shall be in equilibrium at the beginning of a test. When a test is carried out at a higher pressure than atmospheric pressure, it is important that the liquid equilibrium pressure is not lower than this test pressure. 3.3 The test environment shall be stable and cons

28、tant during the test. It shall be as close as possible to the following reference conditions: ambient temperature, 15 C; atmospheric pressure, 1 013 mbar. For products other than carbon dioxide and nitrous oxide: vessel reference pressure, 1 013 mbar. For carbon dioxide and nitrous oxide: vessel ref

29、erence pressure, 15 bar (gauge). 3.4 The vessel and its contents shall have reached a stable temperature before the beginning of the measuring period. Equilibrium conditions are obtained after a period of stabilization, the duration of which depends on the size of the vessel and the type and configu

30、ration of the insulation. 3.5 All accessories of the vessel which can influence the result of the measurement shall be clearly defined and specified in the report. 3.6 All instrumentation used shall be verified by calibration. 3.7 It is not necessary to use the method defined in this International S

31、tandard to evaluate the insulation performance resulting from small modifications; this may be done by simple extrapolation. ISO 21014:2006(E) ISO 2006 All rights reserved 3 4 Measuring the heat leak by the loss of product method 4.1 General There are two methods of measuring the heat leak: direct m

32、easurement of loss of mass; indirect measurement of loss of mass by measuring the gaseous volumetric discharge rate. The filling level shall be 10 0 50 % +of the maximum filling level at the start of measurement, unless otherwise stated. The ambient temperature, ambient barometric pressure and the o

33、perating pressure at the top of the vessel shall be recorded throughout the test so as to be used for correction purposes. The temperature sensor(s) shall be placed in the immediate proximity of the tank being tested, but sited such that they are unaffected directly by cold gas discharged from the v

34、ents. The minimum measurement duration shall be 24 h after stable conditions have been reached. During the test, precautions shall be taken to avoid agitation of the liquid, except for tanks designed for land transport mode. When measuring the rate of discharge of gas escaping from the vessel by a f

35、low meter, it is essential that the entire gas flow passes through the meter. The gas flow rate shall be determined as a mass flow rate by using either of the following: mass flow meter; volumetric flow meter (an appropriate method is shown in Annex A). 4.2 Test procedure The test procedure shall be

36、 as follows: a) precool the vessel; b) leave for a first stabilization period; c) adjust the filling to the intended starting level (e.g. 10 0 50 % + ); d) connect the instrumentation (e.g. gas flow meter); e) leave for a second stabilization period; f) take a sufficient number of readings to establ

37、ish an acceptable thermal equilibrium before the start of the measuring period; g) determine the mass of the vessel contents at the start of measuring period, if direct measurement of the mass is used; h) record readings for a minimum of 24 h; i) determine the loss of product in mass units (when gas

38、eous flow is measured) in accordance with Annex A; j) reduce to reference conditions in accordance with Annex B. ISO 21014:2006(E) 4 ISO 2006 All rights reserved4.3 Determination of the heat leak in units of energy per unit time The rate of product loss (kg/s) during the measurement period, correcte

39、d to the reference conditions in accordance with Annexes A and B, shall be converted to an equivalent heat leak, Q, as given in 4.4. To calculate the heat leak with a product other than the test product, compensation using linear extrapolation in accordance with Annex C may be applied, but only if t

40、he difference between the boiling temperature of these products at the reference conditions does not exceed 20 K. 4.4 Determination of the heat leak as a percentage loss of product per 24 h Based on the result obtained in accordance with 4.3, the heat leak as a percentage loss of product per 24 h is

41、 calculated as follows. a) Correct the measured heat leak to the reference condition for the test product by linear extrapolation, as specified in 4.3. b) Calculate the equivalent loss of the test product per day in accordance with the following formula: gl gf g 86 400 ( ) 100 % vvQ L vhF = where F

42、is the maximum allowable filling mass of the test product (kg); L is the equivalent loss of product as a percentage of F per day; Q is the heat leak (W); h fgis the latent heat of vaporization (J/kg) at the vessel reference pressure (see 3.3); gis the specific volume of vapour (m 3 /kg) at the vesse

43、l reference pressure (see 3.3); lis the specific volume of saturated liquid (m 3 /kg) at the vessel reference pressure (see 3.3); 86 400 is the number of seconds per day. All product-related data shall be taken at correct reference conditions for the specified product. Annex C may be used to determi

44、ne the equivalent loss of product as a percentage of full tank content per day, for a product other than the test product. 5 Determination of the holding time for open systems from heat-leak data The holding time, in days, for open systems is equal to 100 Lfor the specified product. ISO 21014:2006(E

45、) ISO 2006 All rights reserved 5 6 Holding times for closed systems 6.1 Determination of the equilibrium holding time from heat-leak data The system is in thermal equilibrium, i.e. the liquid and gas phases are saturated and at a temperature corresponding to the saturation pressure at all times. The

46、 calculation process shall incorporate correctly the temperature and pressure dependence of the thermodynamic properties. The data source used for calculations shall be identified and the actual value shall be shown in the calculation. Thermodynamic data from bibliography items 1, 2 or 3 may be used

47、. The influence of phase change in the system has to be accounted for in a proper manner. The thermal mass of the vessel shall be neglected in the calculation, which results in shorter holding times. For a degree of filling less than that used for the longest holding time, the holding time shall be

48、defined as the time elapsed between when the initial filling condition is established and when the pressure-limiting device opens. Heat-leak data corrected in accordance with Annex C may be used when different products are concerned. 6.2 Determination of the optimum equilibrium holding time from hea

49、t-leak data The equilibrium holding time for a specific product shall be calculated from heat-leak data as follows. a) Correct the heat leak, Q, measured in accordance with Clause 4, to the reference conditions for the specified product by linear extrapolation (see Annex C). b) Determine the reference quantity of the specified product as follows. 1) When the critical pressure is greater than the pressure of the pressure-limiting device, the reference quantity is the quantity of product which fill

展开阅读全文
相关资源
猜你喜欢
  • ONORM EN 29003 Beib 1-1990 Quality systems model for quality assurance in final inspection and test trilingual index (de en fr)for ONORM EN 29003《质量体系 最终检验和试验的质量保证模式 规范29003三种语言(德语.pdf ONORM EN 29003 Beib 1-1990 Quality systems model for quality assurance in final inspection and test trilingual index (de en fr)for ONORM EN 29003《质量体系 最终检验和试验的质量保证模式 规范29003三种语言(德语.pdf
  • ONORM EN 29003-1990 Quality Systems modelfor quality assurance in final inspection and test《质量体系 最终检验和试验的质量保证模式》.pdf ONORM EN 29003-1990 Quality Systems modelfor quality assurance in final inspection and test《质量体系 最终检验和试验的质量保证模式》.pdf
  • ONORM EN 29004 Beib 1-1990 Quality management and quality system elements guidelines trilingual index (de en fr)for ONORM EN 29004《质量管理和质量体系要素 指南 规范29004三种语言(德语、英语、法语)索引》.pdf ONORM EN 29004 Beib 1-1990 Quality management and quality system elements guidelines trilingual index (de en fr)for ONORM EN 29004《质量管理和质量体系要素 指南 规范29004三种语言(德语、英语、法语)索引》.pdf
  • ONORM EN 29004-1990 Qualüy management and quality System Clements guidelines《质量管理和质量体系要素 准则》.pdf ONORM EN 29004-1990 Qualüy management and quality System Clements guidelines《质量管理和质量体系要素 准则》.pdf
  • ONORM EN 29046-1991 Building construction - Jointing products - Determination of adhesion cohesion properties at constant temperature (ISO 9046 1987)《建筑施工 对接产品 恒温下粘附性 凝聚力性能测定 (ISO .pdf ONORM EN 29046-1991 Building construction - Jointing products - Determination of adhesion cohesion properties at constant temperature (ISO 9046 1987)《建筑施工 对接产品 恒温下粘附性 凝聚力性能测定 (ISO .pdf
  • ONORM EN 29048-1991 Building construction - Jointing products - Determination of extrudability of sealants using standardized apparatus (ISO 9048 1987)《建筑施工 对接产品采用标准设备测定密封剂的可挤压性(IS.pdf ONORM EN 29048-1991 Building construction - Jointing products - Determination of extrudability of sealants using standardized apparatus (ISO 9048 1987)《建筑施工 对接产品采用标准设备测定密封剂的可挤压性(IS.pdf
  • ONORM EN 29052-1-1993 Acoustics - Determination of dynamic stiffness - Part 1 Materials used under floating floors in dwellings《声学 动态稳定度的测定 第1部分: 住宅用浮隔地板材料》.pdf ONORM EN 29052-1-1993 Acoustics - Determination of dynamic stiffness - Part 1 Materials used under floating floors in dwellings《声学 动态稳定度的测定 第1部分: 住宅用浮隔地板材料》.pdf
  • ONORM EN 29053-1993 Acoustics - Materials for acoustical applications - Determination of airflow resistance (ISO 9053 1991)《声学 声学应用材料 气流阻尼的测定(ISO 9053-1991)》.pdf ONORM EN 29053-1993 Acoustics - Materials for acoustical applications - Determination of airflow resistance (ISO 9053 1991)《声学 声学应用材料 气流阻尼的测定(ISO 9053-1991)》.pdf
  • ONORM EN 29070-1993 Information technology - SMGL support facilities - Registration procedures for public text owner identifiers《信息技术 标准通用标记语言SGML支持设备 公用文本拥有者标识符登记程序》.pdf ONORM EN 29070-1993 Information technology - SMGL support facilities - Registration procedures for public text owner identifiers《信息技术 标准通用标记语言SGML支持设备 公用文本拥有者标识符登记程序》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > 其他

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1