【公务员类职业资格】浙江省公务员行政职业能力测验(数量关系)-试卷13及答案解析.doc

上传人:deputyduring120 文档编号:1304845 上传时间:2019-09-25 格式:DOC 页数:12 大小:104KB
下载 相关 举报
【公务员类职业资格】浙江省公务员行政职业能力测验(数量关系)-试卷13及答案解析.doc_第1页
第1页 / 共12页
【公务员类职业资格】浙江省公务员行政职业能力测验(数量关系)-试卷13及答案解析.doc_第2页
第2页 / 共12页
【公务员类职业资格】浙江省公务员行政职业能力测验(数量关系)-试卷13及答案解析.doc_第3页
第3页 / 共12页
【公务员类职业资格】浙江省公务员行政职业能力测验(数量关系)-试卷13及答案解析.doc_第4页
第4页 / 共12页
【公务员类职业资格】浙江省公务员行政职业能力测验(数量关系)-试卷13及答案解析.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、浙江省公务员行政职业能力测验(数量关系)-试卷 13及答案解析(总分:62.00,做题时间:90 分钟)一、数量关系(总题数:33,分数:62.00)1.数字推理给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补空缺项,使之符合原数列的排列规律。_2.5, 63, 37, 511, 101 ( )。(分数:2.00)A.1727B.1833C.1905D.19293.11, 12, 16, 39, 67, 122, ( )。(分数:2.00)A.228B.230C.336D.3404.2, 4, 3, 7, 16, 107, (

2、)。(分数:2.00)A.1594B.1684C.1707D.18565. (分数:2.00)A.59B.183C.65D.786.31, 29, 23, ( ), 17, 13, 11。(分数:2.00)A.21B.20C.19D.187. (分数:2.00)A.B.C.D.8.4, 9, 16, 25, ( )。(分数:2.00)A.32B.36C.42D.499.数学运算在这部分试题中,每道试题呈现一道算术式或是表述数字关系的一段文字,要求你迅速、准确地计算出答案。_10.某企业原有职工 110人,其中技术人员是非技术人员的 10倍。今年招聘后,两类人员的人数之比未变,且现有职工中技术人

3、员比非技术人员多 153人。问今年新招非技术人员多少名?( )(分数:2.00)A.7B.8C.9D.1011.如下图,正方形ABCD 边长为 10厘米,一只小蚂蚁 E从 A点出发均速移动,沿边 AB、BC、DC 前往 D点。问哪个图形反映了三角形 AED的面积与小蚂蚁行走时间的关系?( ) (分数:2.00)A.B.C.D.12.如图,某三角形展览馆由 36个小三角形展室组成,每两个相邻展室(指有公共边的小三角形)都有门相通,若某参观者不愿返回已参观过的展室(通过每个房间至多一次),那么他至多能参观多少个展室?( )(分数:2.00)A.33B.32C.31D.3013.某小区有 40的住户

4、订阅日报,有 15的住户同时订阅日报和时报,至少有 75的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?( )(分数:2.00)A.35B.50C.55D.6014.将自然数 1-100分别写在完全相同的 100张卡片上,然后打乱卡片,先后随机取出 4张,问这 4张先后取出的卡片上的数字呈增序的几率是多少?( ) (分数:2.00)A.B.C.D.15.某演唱会检票前若干分钟就有观众开始排队等候入场,而每分钟来的观众人数一样多。从开始检票到等候队伍消失,若同时开 4个入场口需 50分钟,若同时开 6个人场口则需 30分钟。问如果同时开 7个人场口需几分钟?( )(分数:2.00)A

5、.18分钟B.20分钟C.22分钟D.25分钟16.如图所示,ABC 中 DEBC,且 BO和 CO分别是ABC 和ACB 的角平分线。已知AB=254cm,BC=245cm,AC=20cm。问ADE 的周长是多少?( ) (分数:2.00)A.454cmB.451cmC.448cmD.445cm17.某区要从 10位候选人中投票选举人大代表,现规定每位选举人必须从这 10位中任选两位投票。问至少要有多少位选举人参加投票,才能保证有不少于 10位选举人投了相同两位候选人的票?( )(分数:2.00)A.382位B.406位C.451位D.516位18.现有 6个一元面值硬币正面朝上放在桌子上,

6、你可以每次翻转 5个硬币(必须翻转 5个),问你最少经过几次翻转可以使这 6个硬币全部反面朝上?( )(分数:2.00)A.5次B.6次C.7次D.8次19.有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上表示信号,问共可表示多少种不同的信号?( )(分数:2.00)A.24种B.48种C.64种D.72种20.A、B 两地相距 100公里,甲以 10千米小时的速度从 A地出发骑自行车前往 B地。6 小时后,乙开摩托车从 A地出发驶向 B地。问为了使乙不比甲晚到 B地,摩托车每小时至少要行驶多少千米?( )(分数:2.00)A.24千米B.25千米C.28千米D.3

7、0千米21.某人向朋友借款两万元,年利率为 5,约定两年还清,还款方式是每年年底偿还 X元。则 X约为( )。(分数:2.00)A.10685元B.10756元C.11234元D.12302元22.某团体从甲地到乙地,甲、乙两地相距 100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,已知步行速度为 8千米小时,汽车速度为40千米小时。问使团体全部成员同时到达乙地需要多少时间?( )(分数:2.00)A.55 小时B.5小时C.45 小时D.4小时23.以一个矩形任意两条边为直径画圆,将该矩形划分成的区域数有几种不同的可能性?( )(分数

8、:2.00)A.1B.2C.3D.424.某单位扩建周长为 44米的长方形草坪,计划扩建后的草坪仍为长方形,其长和宽分别比原来增加 5米和 3米,面积比原来增加 95平方米,则扩建前草坪的面积为( )。(分数:2.00)A.85平方米B.105平方米C.117平方米D.121平方米25.一艘船在河水流速为每小时 15千米的河中央抛锚,停在码头下游 60千米处。一艘时速为 40千米的救援船从码头出发前去拖船,已知救援船拖上另一艘船后,船速将下降 (分数:2.00)A.3B.35C.4D.5126.一列火车途经两个隧道和一座桥梁,第一个隧道长 600米,火车通过用时 18秒;第二个隧道长 480米

9、,火车通过用时 15秒;桥梁长 800米,火车通过时速度为原来的一半,则火车通过桥梁所需的时间为( )。(分数:2.00)A.20秒B.25秒C.40秒D.46秒27.甲、乙两个工程队需要在规定的工期内完成某项工程。若甲、乙两队合作,则恰好能按期完成;若甲的效率提高、 ,乙的效率提高 ,则用原定工期的 即可完成;若乙的效率降低 (分数:2.00)A.10天B.12天C.16天D.18天28.甲、乙两辆型号不同的挖掘机同时挖掘一个土堆,连续挖掘 8小时即可将土堆挖平。现在先由甲单独挖,5 小时后乙也加入挖掘队伍,又过了 5小时土堆被挖平。已知甲每小时比乙能多挖 35吨土,则如果土堆单独让乙挖,需

10、要多少个小时?( )(分数:2.00)A.10B.12C.15D.2029.某单位组织员工去旅游,要求每辆汽车坐的人数相同。如果每辆车坐 20人,还剩下 2名员工;如果减少一辆汽车,员工正好可以平均分到每辆汽车。问该单位共有多少名员工?( )(分数:2.00)A.244B.242C.220D.22430.某单位志愿者团队在重阳节购买了一批牛奶,到“夕阳红”敬老院慰问孤寡老人。如果给每个老人分5盒,则剩下 38盒;如果给每个老人分 6盒,则最后一个老人不足 5盒,但至少分得 1盒,问该敬老院至少有多少名老人?( )(分数:2.00)A.39B.40C.41D.4331.亲子班上 5对母子坐成一圈

11、,孩子都挨着自己的母亲就座,问所有孩子均不相邻的概率在以下哪个范围内?( )(分数:2.00)A.小于 5B.5-10C.10-15D.大于 1532.小赵、小钱、小孙、小李、小周五个人的收入依次成等比,已知小赵的收入是 3000元,小孙的收入是3600元,那么小周比小孙的收入高( )。(分数:2.00)A.700元B.720元C.760元D.780元33.今年某高校数学系毕业生为 60名,其中 70是男生,男生中有 (分数:2.00)A.15位B.19位C.17位D.21位浙江省公务员行政职业能力测验(数量关系)-试卷 13答案解析(总分:62.00,做题时间:90 分钟)一、数量关系(总题

12、数:33,分数:62.00)1.数字推理给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补空缺项,使之符合原数列的排列规律。_解析:2.5, 63, 37, 511, 101 ( )。(分数:2.00)A.1727 B.1833C.1905D.1929解析:解析:原数列可以化作:2 2 +1,4 3 1,6 2 +1,8 3 1,10 2 +1,(12 3 1),观察发现原数列是幂次数列的修正数列,故括号处所要填入的数据为 1727,答案为 A。3.11, 12, 16, 39, 67, 122, ( )。(分数:2.00)A.2

13、28 B.230C.336D.340解析:解析:前三项之和等于第四项,选 A。4.2, 4, 3, 7, 16, 107, ( )。(分数:2.00)A.1594B.1684C.1707 D.1856解析:解析:考查递推数列,前两项之积减去 5为第三项,故空缺项为 161075,根据尾数法判定,答案为 1707。5. (分数:2.00)A.59B.183C.65 D.78解析:解析:原数列各项整数部分依次为:1,2,3,4,5,故下一项整数部分应为 6。C 项正确。6.31, 29, 23, ( ), 17, 13, 11。(分数:2.00)A.21B.20C.19 D.18解析:解析:题中数

14、字全部为质数,因此答案选 C。7. (分数:2.00)A.B.C.D. 解析:解析:(112)2+1=76; 2(76)+1=103; (76)(103)+1=449。 这个数列是移动积数列变形,规律是前两项乘积+1=第三项。 因此答案为(103)(449)+1=46727。故应选 D。8.4, 9, 16, 25, ( )。(分数:2.00)A.32B.36 C.42D.49解析:解析:平方数列。4=2 2 ,9=3 2 ,16=4 2 ,25=5 2 ,因此答案为 6 2 =36。9.数学运算在这部分试题中,每道试题呈现一道算术式或是表述数字关系的一段文字,要求你迅速、准确地计算出答案。_

15、解析:10.某企业原有职工 110人,其中技术人员是非技术人员的 10倍。今年招聘后,两类人员的人数之比未变,且现有职工中技术人员比非技术人员多 153人。问今年新招非技术人员多少名?( )(分数:2.00)A.7 B.8C.9D.10解析:解析:根据题意,设招聘前非技术人员为 x人,招聘后非技术人员为 y人。则x+10x=110,10yy=153。解得 x=10,y=17,yx=7。所以新招非技术人员为 7人,故本题选 A。11.如下图,正方形ABCD 边长为 10厘米,一只小蚂蚁 E从 A点出发均速移动,沿边 AB、BC、DC 前往 D点。问哪个图形反映了三角形 AED的面积与小蚂蚁行走时

16、间的关系?( ) (分数:2.00)A. B.C.D.解析:解析:小蚂蚁在 AB 的过程中,三角形 AED的底边 AD不变,高 AE在逐渐增大,所以三角形 AED的面积在逐渐增大;在 BC 的过程中,三角形 AED的底边 A_D不变,高等于边 AB的长度,不发生任何改变,所以三角形 AED的面积不变;在 CD 的过程中,三角形 AED的底边 AD不变,高 DE在逐渐减小,所以三角形 AED的面积在逐渐减小。且小蚂蚁为匀速运动,故在 AB,CD 的过程中,面积的变化与行走的时间呈直线关系,故本题选 A。12.如图,某三角形展览馆由 36个小三角形展室组成,每两个相邻展室(指有公共边的小三角形)都

17、有门相通,若某参观者不愿返回已参观过的展室(通过每个房间至多一次),那么他至多能参观多少个展室?( )(分数:2.00)A.33B.32C.31 D.30解析:解析:几何计数问题。从点 A开始,按逆时针方向逐层(从外到内)依次参观,要满足“通过每个房间至多一次”,则每到“拐角”处的那个展室不参观,依此方式,至少有 5个展室参观不到,所以他至多能参观 31个展室。故本题答案为 C。13.某小区有 40的住户订阅日报,有 15的住户同时订阅日报和时报,至少有 75的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?( )(分数:2.00)A.35B.50 C.55D.60解析:解析:容斥问

18、题。至少有 75的住户至少订阅两种报纸中的一种,且订阅日报的住户为 40,因此只订阅时报的住户至少为 7540=35。而已知两种都订的住户为 15,因此订阅时报的住户至少为 35+15=50。故本题选 B。14.将自然数 1-100分别写在完全相同的 100张卡片上,然后打乱卡片,先后随机取出 4张,问这 4张先后取出的卡片上的数字呈增序的几率是多少?( ) (分数:2.00)A.B. C.D.解析:解析:从 100张卡片中随机抽取 4张,随机排序有 A 4 4 =24(种)排法,但呈现增序的排列只有一种,故呈增序的几率是 15.某演唱会检票前若干分钟就有观众开始排队等候入场,而每分钟来的观众

19、人数一样多。从开始检票到等候队伍消失,若同时开 4个入场口需 50分钟,若同时开 6个人场口则需 30分钟。问如果同时开 7个人场口需几分钟?( )(分数:2.00)A.18分钟B.20分钟C.22分钟D.25分钟 解析:解析:牛吃草问题,(4x)50=(6x)30,解得 x=1,故同时开 7个入场口需要时间为(41)50(71)=25(分钟)。16.如图所示,ABC 中 DEBC,且 BO和 CO分别是ABC 和ACB 的角平分线。已知AB=254cm,BC=245cm,AC=20cm。问ADE 的周长是多少?( ) (分数:2.00)A.454cm B.451cmC.448cmD.445c

20、m解析:解析:由 DEBC 可知,DOB=OBC,再由 BO是DBC 的平分线可知,DOB=DBO,因此线段BD=DO,同理,CE=OE,故ADE 的周长为 AD+AE+OD+OE=AD+BD+AE+EC=AB+AC=454(cm)。17.某区要从 10位候选人中投票选举人大代表,现规定每位选举人必须从这 10位中任选两位投票。问至少要有多少位选举人参加投票,才能保证有不少于 10位选举人投了相同两位候选人的票?( )(分数:2.00)A.382位B.406位 C.451位D.516位解析:解析:选取两位候选人共有 C 10 2 =45种情况,根据最不利原则,要使有 10位选举人投了相同两位候

21、选人的票,那么投了其他相同候选人票的选举人都是 9位,所以至少要有 459+1=406(位)。本题选B。18.现有 6个一元面值硬币正面朝上放在桌子上,你可以每次翻转 5个硬币(必须翻转 5个),问你最少经过几次翻转可以使这 6个硬币全部反面朝上?( )(分数:2.00)A.5次B.6次 C.7次D.8次解析:解析:若要使 6枚硬币全部翻转到反面朝上,那么多枚硬币必定翻转奇数次,6 个奇数之和为偶数,因此排除 A和 C项。另外每枚硬币翻转的机会均等,次数也相等,那么可知 n6 必定为整数且为奇数,因此答案为 B。19.有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上

22、表示信号,问共可表示多少种不同的信号?( )(分数:2.00)A.24种B.48种C.64种 D.72种解析:解析:如果使用 1盏灯,那么共有 C 4 1 =4种信号; 如果使用 2盏灯,那么共有 A 4 2 =12种信号; 如果使用 3盏灯,那么共有 A 4 3 =24种信号; 如果使用 4盏灯,那么共有 A 4 4 =24种信号; 因此共有 4+12+24+24=64种信号,故应选 C。20.A、B 两地相距 100公里,甲以 10千米小时的速度从 A地出发骑自行车前往 B地。6 小时后,乙开摩托车从 A地出发驶向 B地。问为了使乙不比甲晚到 B地,摩托车每小时至少要行驶多少千米?( )(

23、分数:2.00)A.24千米B.25千米 C.28千米D.30千米解析:解析:6 小时后,甲行驶了 60千米,离 B地还有 40千米,他还需要 4010=4 小时到达 B地; 为了使乙不比甲晚到 B地,则乙需要在 4小时之内行驶 100公里,因此他的速度至少为 1004=25 千米小时。21.某人向朋友借款两万元,年利率为 5,约定两年还清,还款方式是每年年底偿还 X元。则 X约为( )。(分数:2.00)A.10685元B.10756元 C.11234元D.12302元解析:解析:方法一:等额本息每年还款额公式:x=NT n (T1)(T n 1),其中 N为贷款额,T 为(1+年利率),n

24、 为贷款期,据此代入各数值,可得答案为 B。 方法二:我们可以利用现值这个概念来做这道题目。 如果利率为 r,那么 n年后的 m元,现值就是 m(1+r),因此这个人每年还款的现值和应该等于 2万元,即 x(1+5) 2 +x(1+5)=20000。解得 x10756 元。22.某团体从甲地到乙地,甲、乙两地相距 100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,已知步行速度为 8千米小时,汽车速度为40千米小时。问使团体全部成员同时到达乙地需要多少时间?( )(分数:2.00)A.55 小时B.5小时 C.45 小时D.4小时解析:解

25、析:设先坐车的人到途中下车处距离甲地 s。 那么先坐车的人达到乙地需要 s40+(100s)8 小时 当先坐车的人下车时,后坐车的人走了 8s40=s5 千米,他们和汽车之间的距离为ss5=4s5 他们遇到汽车,还需要时间(4s5)(8+40)=s60 小时,他们和汽车相遇的地点距离甲地 s5+8s60=s3,即他们还距离乙地 100s3 千米 则他们到达乙地还需要(100s3)40 小时 团体全部成员同时到达乙地,所以 s40+(100s)8=s40+s60+(100s3)40 解得 s=75千米,因此团体全部成员同时到达乙地需要 7540+(10075)8=5 小时。23.以一个矩形任意两

26、条边为直径画圆,将该矩形划分成的区域数有几种不同的可能性?( )(分数:2.00)A.1B.2C.3D.4 解析:解析:因为矩形的长(b)和宽(a)的比例未知,故需要分类考虑。(1)当 a 时,分别以相对短边两边、相对长边两边、相邻一长一短两边为直径作圆,会将矩形分别分为 3、7、5 个区域(见下图1、2、3)。(2)当 a= 时,分别以相对短边两边、相对长边两边、相邻一长一短两边为直径作圆,会将矩形分别分为 3、7、5 个区域(下图 4为 5 个区域的情形,其他情形不再给出图例)。(3)当 ba时,分别以相对短边两边、相对长边两边、相邻一长一短两边为直径作圆,会将矩形分别分为3、5、4 个区

27、域。(4)当 a=b时,分别以相对两边、相邻两边作圆,都会将矩形(此时为正方形)分别分为4个区域。24.某单位扩建周长为 44米的长方形草坪,计划扩建后的草坪仍为长方形,其长和宽分别比原来增加 5米和 3米,面积比原来增加 95平方米,则扩建前草坪的面积为( )。(分数:2.00)A.85平方米B.105平方米 C.117平方米D.121平方米解析:解析:几何问题。设扩建前长方形草坪的长为 x米,因为扩建前草坪的周长为 44米,所以扩建前草坪的宽为(22x)米。则扩建后草坪的长为(x+5)米,宽为(22x+3)米,根据题意可列方程(x+5)(22x+3)=x(22x)+95,解得 x=15。所

28、以扩建前草坪的面积为 15(2215)=105(平方米)。故本题答案为 B。25.一艘船在河水流速为每小时 15千米的河中央抛锚,停在码头下游 60千米处。一艘时速为 40千米的救援船从码头出发前去拖船,已知救援船拖上另一艘船后,船速将下降 (分数:2.00)A.3B.35C.4D.51 解析:解析:去时的时间= 11(小时);回来时的时间=26.一列火车途经两个隧道和一座桥梁,第一个隧道长 600米,火车通过用时 18秒;第二个隧道长 480米,火车通过用时 15秒;桥梁长 800米,火车通过时速度为原来的一半,则火车通过桥梁所需的时间为( )。(分数:2.00)A.20秒B.25秒C.40

29、秒D.46秒 解析:解析:行程问题。设火车车长为 x米,原来的速度为 v米秒,根据题意可列方程组:27.甲、乙两个工程队需要在规定的工期内完成某项工程。若甲、乙两队合作,则恰好能按期完成;若甲的效率提高、 ,乙的效率提高 ,则用原定工期的 即可完成;若乙的效率降低 (分数:2.00)A.10天B.12天C.16天D.18天 解析:解析:工程问题。设甲队原来的效率为 3a,乙队原来的效率为 4b,原定的工期为 x天。则根据题意可得28.甲、乙两辆型号不同的挖掘机同时挖掘一个土堆,连续挖掘 8小时即可将土堆挖平。现在先由甲单独挖,5 小时后乙也加入挖掘队伍,又过了 5小时土堆被挖平。已知甲每小时比

30、乙能多挖 35吨土,则如果土堆单独让乙挖,需要多少个小时?( )(分数:2.00)A.10B.12C.15D.20 解析:解析:甲每小时比乙多挖 35吨,可假设甲的效率是 x+35,乙的效率是 x。则据题目条件“甲、乙一起挖 8小时可挖完”可知:工作总量=8(x+x+35);再由“甲先挖 5小时,乙也加入,再挖 5小时可挖完”可知:工作总量=5(x+35)+5(x+x+35)。由此可得方程:8(x+x+35)=5(x+35)+5(x+x+35),解得 x=70,则总量为 1400吨,因此由乙单独挖需要 20个小时,故选 D。29.某单位组织员工去旅游,要求每辆汽车坐的人数相同。如果每辆车坐 2

31、0人,还剩下 2名员工;如果减少一辆汽车,员工正好可以平均分到每辆汽车。问该单位共有多少名员工?( )(分数:2.00)A.244B.242 C.220D.224解析:解析:开走一辆车,则要剩余(20+2)人,这 22人可平均分配到各车,可知现在车的数量为 11或22,则原来车的数量为 12或 23,结合选项,23 辆车没有答案,可知总人数为 1220+2=242(人),因此答案选择 B。30.某单位志愿者团队在重阳节购买了一批牛奶,到“夕阳红”敬老院慰问孤寡老人。如果给每个老人分5盒,则剩下 38盒;如果给每个老人分 6盒,则最后一个老人不足 5盒,但至少分得 1盒,问该敬老院至少有多少名老

32、人?( )(分数:2.00)A.39B.40 C.41D.43解析:解析:本题可以采用代入排除法。如果有 39名老人,则根据“每个老人分 5盒,则剩下 38盒”可知共有 233盒牛奶,如果前 38个老人每人分 6盒,那么最后一个老人得 5盒,与题意不符,排除 A项;如果有 40名老人,则共有 238盒牛奶,如果前 39个老人每人分 6盒,那么最后一个老人得 4盒,与题意相符。同理,C、D 项不舍题意。故本题选 B。31.亲子班上 5对母子坐成一圈,孩子都挨着自己的母亲就座,问所有孩子均不相邻的概率在以下哪个范围内?( )(分数:2.00)A.小于 5B.5-10 C.10-15D.大于 15解

33、析:解析:概率问题。因为孩子都挨着自己的母亲就座,所以 5对母子一共有 2 5 =32(种)就座方式,而所有孩子均不相邻的就座方式共有 2种,所以所求概率为 32.小赵、小钱、小孙、小李、小周五个人的收入依次成等比,已知小赵的收入是 3000元,小孙的收入是3600元,那么小周比小孙的收入高( )。(分数:2.00)A.700元B.720元 C.760元D.780元解析:解析:小孙的收入为小赵的 36003000=12(倍),由题意知小周的收入也是小孙的 12 倍,所以小周比小孙多收入 3600123600=720(元)。故选 B。33.今年某高校数学系毕业生为 60名,其中 70是男生,男生中有 (分数:2.00)A.15位B.19位C.17位 D.21位解析:解析:男生继续攻读硕士学位的有 6070 =14(位),女生攻读硕士学位的人数比例为,因此女生继续攻读硕士学位的有 60(170)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 考试资料 > 职业资格

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1