1、Designation: D3675 17Standard Test Method forSurface Flammability of Flexible Cellular Materials Using aRadiant Heat Energy Source1This standard is issued under the fixed designation D3675; the number immediately following the designation indicates the year oforiginal adoption or, in the case of rev
2、ision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This is a fire test response standard.1.2 This test method describes the measurement of surfacefla
3、mmability of flexible cellular materials.1.3 This standard measures and describes the response ofmaterials, products, or assemblies to heat and flame undercontrolled conditions, but does not, by itself, incorporate allfactors required for fire hazard or fire risk assessment of thematerials, products
4、, or assemblies under actual fire conditions.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regula
5、tory limitations prior to use.1.5 Fire testing is inherently hazardous. Adequate safe-guards for personnel and property shall be employed inconducting these tests.1.6 Specific information about hazards is given in Section 7.NOTE 1There is no known ISO equivalent to this standard.1.7 The values state
6、d in SI units are to be regarded as thestandard. The values stated in inch-pound units, in parentheses,are for information only and are approximations (see alsoIEEE/ASTM SI-10).1.8 This international standard was developed in accor-dance with internationally recognized principles on standard-ization
7、 established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2E84 Test Method for Surface Burning Characteristics ofBui
8、lding MaterialsE162 Test Method for Surface Flammability of MaterialsUsing a Radiant Heat Energy SourceE176 Terminology of Fire StandardsE1317 Test Method for Flammability of Marine SurfaceFinishesE1321 Test Method for Determining Material Ignition andFlame Spread PropertiesE1546 Guide for Developme
9、nt of Fire-Hazard-AssessmentStandardsIEEE/ASTM SI-10 Standard for Use of the InternationalSystem of Units (SI): The Modern Metric System2.2 ISO Standards:3ISO 13943 Fire SafetyVocabulary3. Terminology3.1 Definitions:3.1.1 For definitions of terms used in this test method, referto the terminology con
10、tained in Terminology E176 andISO 13943. In case of conflict, the definitions given in Termi-nology E176 shall prevail.3.1.2 flame front, nthe leading edge of a flame propagat-ing through a gaseous mixture or across the surface of a liquidor solid.3.2 Definitions of Terms Specific to This Standard:3
11、.2.1 flashing, nflame fronts of three seconds or less induration.3.2.2 radiant panel index, Is,nthe product of the flamespread factor, Fsand the heat evolution factor, Q.4. Summary of Test Method4.1 This test method of measuring surface flammability offlexible cellular materials employs a radiant pa
12、nel heat sourceconsisting of a 300 by 460-mm (12 by 18-in.) panel in front ofwhich an inclined 150 by 460-mm (6 by 18-in.) specimen ofthe material is placed. The orientation of the specimen is suchthat ignition is forced near its upper edge and the flame frontprogresses downward.1This test method is
13、 under the jurisdiction of ASTM Committee D20 on Plasticsand is the direct responsibility of Subcommittee D20.30 on Thermal Properties.Current edition approved May 1, 2017. Published June 2017. Originallyapproved in 1978. Last previous edition approved in 2016 as D3675 16. DOI:10.1520/D3675-17.2For
14、referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from International Standardization Organization, P.O. B
15、ox 56,CH-1211; Geneva 20, Switzerland.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recogni
16、zed principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.14.2 Factors derived from the rate of progress of the flamefront an
17、d the rate of heat liberated by the material under test arecombined to provide a radiant panel index.5. Significance and Use5.1 This test method is intended for use when measuringsurface flammability of flexible cellular materials exposed tofire. The test method provides a laboratory test procedure
18、formeasuring and comparing the surface flammability of materialswhen exposed to a prescribed level of radiant heat energy. Thetest is conducted using specimens that are representative, to theextent possible, of the material or assembly being evaluated.For example, if an assembly is required to be te
19、sted, suchspecimens shall replicate the type and thickness of all thelayers present in the assembly being evaluated.5.2 The rate at which flames will travel along surfacesdepends upon the physical and thermal properties of thematerial, product, or assembly under test, the specimen mount-ing method a
20、nd orientation, the type and level of fire or heatexposure, the availability of air, and properties of the surround-ing enclosure. (1-6)4, 55.3 Test Method E162 is a generic version of this testmethod, using an apparatus that is substantially the same as theone used in this test method. However, Tes
21、t Method E162 isnormally intended for application to specimens other thanflexible cellular materials.5.3.1 The pilot burner in this test method is different fromthe pilot burner in Test Method E162.5.4 In this procedure, the specimens are subjected to one ormore specific sets of laboratory fire test
22、 conditions. If differenttest conditions are substituted or the end-use conditions arechanged, it is not always possible by or from this test to predictchanges in the fire-test-response characteristics measured.Therefore, the results are valid only for the fire test exposureconditions described in t
23、his procedure.5.5 If the test results obtained by this test method are to beconsidered as part of an overall assessment of fire hazard in abuilding or structure, then the criteria, concepts and proceduresincorporated into Guide E1546 shall be taken into consider-ation.6. Apparatus6.1 The apparatus s
24、hall be essentially as shown in Fig. 1 andshall include the following:6.1.1 Radiant Panel with Air and Gas SupplyThe radiantpanel shall consist of a porous refractory material verticallymounted in a cast iron frame, exposing a radiating surface of300 by 460 mm (12 by 18 in.) and shall be capable of
25、operatingat temperatures up to 820C (1500F). The panel shall beequipped (see Fig. 1) with a venturi-type aspirator for mixinggas and air at approximately atmospheric pressure; a centrifu-gal blower, or equivalent, capable of providing 9.4 dm3/s (1200ft3/hour) air at a pressure of 0.7 kPa (2.8 in. wa
26、ter); an air filterto prevent dust from obstructing the panel pores; a pressureregulator and a control and shut-off valve for the gas supply.6.1.2 Specimen HolderThe specimen holder shall con-form in shape and dimension to Fig. 2 and be constructed fromheat-resistant chromium steel, or other suitabl
27、e non-combustible material which will not be affected by the heatinput during the test. Observation marks shall be filed on thesurface of the specimen holder to correspond with 75-mm(3-in.) interval lines on the specimen.6.1.2.1 The calibration process (see A1.2) shall be con-ducted with the specime
28、n holder to be used in the tests toensure that the physical characteristics of the constructionmaterial do not affect the test results.6.1.3 Framework for Support of the Specimen HolderTheframework shall have two transverse rods of stainless steel,each 12.5 mm 6 3.0 mm (0.5 6 0.13 in.) in diameter,
29、with astop to center the specimen holder directly in front of theradiant panel. The support and bracing members shall beconstructed from metal stock. Since the angle of the specimenand its position with respect to the panel are critical, theframework dimensions specifying these conditions shall bewi
30、thin 3.0 mm (0.13 in.) of the values given in Fig. 1.6.1.4 Pilot BurnerThe pilot burner shall be a porcelaintube 203-230 mm (8-9 in.) in length, nominally 6.3 mm (0.25in.) in diameter, with two holes 1.5 6 0.1 mm (0.059 6 0.004in.) in diameter equally spaced in the tube (see Fig. 3). Theburner shall
31、 be mounted horizontally and at an angle of 15 to20 to the intersection of the horizontal plane of the burner withthe plane of the specimen with the outlet end of the burnerspaced 32 6 2 mm (1.25 6 0.1 in.) from the specimen (see Fig.3). The pilot shall provide a 150 to 180-mm (6 to 7-in.) flameof a
32、cetylene gas premixed with air in an aspirating type fitting.Properly adjusted, the pilot flame shall have 25-mm (1-in.)inner blue cones and should impinge on the upper centralsurface of the specimen within 13 mm (0.5 in.) of the edge ofthe specimen support frame. Flow rates of 0.015 dm3/s (0.032ft3
33、/min) of acetylene and 0.075 dm3/s (0.16 ft3/min) of air havebeen found to provide the desired flame.6.1.5 StackThe stack shall be made from nominally1.0-mm (0.040-in.) sheet steel with shape and dimensions asshown in Fig. 1. The position of the stack with respect to thespecimen and radiant heat pan
34、el shall also comply with therequirements of Fig. 1.6.1.6 ThermocouplesEight thermocouples of equal resis-tance and connected in parallel shall be mounted in the stackand supported with porcelain insulators as indicated in Fig. 1and Fig. 4. The thermocouples shall be Chromel-Alumel TypeK, shielded a
35、gainst high heat with insulation resisting up to1200C (2190F), and with wire gages in the range of0.36-0.51 mm (0.14-0.20 in.) (30 AWG-24 AWG) diameter.The mean stack thermocouple temperature rise for unit heatinput rate of the calibration burner, , shall be determinedperiodically for the specific t
36、est apparatus, using the procedurein A1.2.6.1.7 Automatic Potentiometer RecorderAn automatic po-tentiometer recorder in the range from 38 to 538C (100 to1000F) shall be installed to record the temperature variationof the stack thermocouples as described in 6.1.6. Alternatively,4The boldface numbers
37、in parentheses refer to a list of references at the end ofthis standard.5Also see Test Method E162.D3675 172a computerized data acquisition system shall be permitted to beused. The data acquisition system shall have facilities to recordthe temperature output from the thermopile. The data acquisi-tio
38、n system shall have an accuracy of 0.01 % of the maximumtemperature to be measured. Whichever system is used, it shallbe capable of recording, or printing, data at least every 5 s fora minimum of 1 h. For cases where preliminary tests indicaterapid flame spread, a system shall be used capable of acq
39、uiringdata fast enough to ensure adequate results (see 11.6).6.1.8 HoodA hood with exhaust blower placed over thestack is required. Before igniting the panel, but with theexhaust hood operating, the air flow rate through the stack shallMetric Equivalentsmm in. mm in.1.0 0.040 152 612.712 241 91216.0
40、58 457 1822.278 492 193844 134 19.1 by 19.34 by3451 2 38by32 112 by 11464 212 305 by 457 12 by 1871 2.8 330 by 483 13 by 19102 4 51by51by3.2 2by2by18111 438 1.3 by 514 by 914 0.050 by 2014 by 36121 434100 cfm 47.21 litres/sFIG. 1 Details of Construction of Test EquipmentD3675 173produce a nominal ve
41、locity of 0.5 m/s (100 ft/min, 30 m/min).Measurements are to be made either with a hot wire anemom-eter after at least 30 seconds of insertion of the probe into thecenter of the stack at a distance of 152 mm (6 in.) down fromthe top of the stack opening, or with a bi-directional probe orsimilar devi
42、ce at the top of the stack opening. The hot wireanemometer, bi-directional probe or similar device, shall havean accuracy of 60.1 m/s (19 ft/min).6.1.8.1 In order to facilitate the insertion of the hot wireanemometer probe, a hole of adequate diameter to allow itsinsertion shall be pre-drilled throu
43、gh the hood, in the center ofeither of the 152 mm (6 in.) wide surfaces, so as to preventcontact of the probe with the internal baffles. The hole isintended to be used for insertion of the probe and shall beplugged after the air flow rate has been established and beforetesting.6.1.8.2 The velocity i
44、s not critical for flame spread measure-ments provided a stack thermocouple calibration is performed(see 6.1.6 and A1.2) for the established test conditions. Thehood surfaces shall clear the top and sides of the stack by aminimum of 250 mm (10 in.) and 190 mm (7.5 in.), respec-tively.6.1.8.3 Testing
45、 has shown that the air flow rate through thestack, if measured during operating conditions using a bi-directional probe or similar device, produces a velocity ofapproximately 1.3 m/s (250 ft/min).6.1.9 Radiation PyrometerThe radiation pyrometer forstandardizing the thermal output of the panel shall
46、 be suitablefor viewing a circular area 250 mm (10 in.) in diameter at arange of about 1.2 m (4 ft). It shall be calibrated over theoperating black body temperature range in accordance with theprocedure described in Annex A1.Metric Equivalentsmm in. mm in.19.034 159 61425 1 433 175832 114 460 181876
47、 3 1.6 by 19 by 533116 by34 by 21133 514FIG. 2 Specimen HolderD3675 1746.1.10 Portable PotentiometerThe electrical output of theradiation pyrometer shall be monitored by means of a poten-tiometer provided with a millivolt range suitable for use withthe radiation pyrometer described in 6.1.9. Alterna
48、tively, thedata shall be permitted to be recorded with a computerized dataacquisition unit, as discussed in 6.1.7.6.1.11 TimerThe timer shall be calibrated to read to 0.01min to record the time of events during the test.7. Hazards7.1 Safeguards shall be installed in the panel fuel supplysystem to gu
49、ard against a gas air fuel explosion in the testchamber. Potential safeguards include, but are not limited to,one or more of the following: a gas feed cut-off activated whenthe air supply fails; a flame sensor directed at the panel surfacethat stops fuel flow when the panel flame goes out; and a heatdetector mounted in contact with the radiant panel plenum thatis activated when the panel temperature exceeds safe limits.Manual reset is a requirement of any safeguard system used.7.2 The exhaust system must be so de