ASTM F1266 - 89(2008) Standard Performance Specification for Cerebral Stereotactic Instruments (Withdrawn 2017).pdf

上传人:孙刚 文档编号:287146 上传时间:2019-07-10 格式:PDF 页数:6 大小:86.09KB
下载 相关 举报
ASTM F1266 - 89(2008) Standard Performance Specification for Cerebral Stereotactic Instruments (Withdrawn 2017).pdf_第1页
第1页 / 共6页
ASTM F1266 - 89(2008) Standard Performance Specification for Cerebral Stereotactic Instruments (Withdrawn 2017).pdf_第2页
第2页 / 共6页
ASTM F1266 - 89(2008) Standard Performance Specification for Cerebral Stereotactic Instruments (Withdrawn 2017).pdf_第3页
第3页 / 共6页
ASTM F1266 - 89(2008) Standard Performance Specification for Cerebral Stereotactic Instruments (Withdrawn 2017).pdf_第4页
第4页 / 共6页
ASTM F1266 - 89(2008) Standard Performance Specification for Cerebral Stereotactic Instruments (Withdrawn 2017).pdf_第5页
第5页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: F1266 89 (Reapproved 2008)Standard Performance Specification forCerebral Stereotactic Instruments1This standard is issued under the fixed designation F1266; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of l

2、ast revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers stereotactic instruments usedby neurosurgeons to assist in the placement of probes, such asca

3、nnulae, needles, forceps, or electrodes or to direct radiationinto brain regions or anatomical targets that are not visible onthe surface. The general location of these regions is determinedby measurements from landmarks visualized by X ray or othermeans, such measurements being based on atlases der

4、ivedfrom anatomical studies and autopsy. Because of the anatomi-cal variability, more precise location in any single patient maybe determined by physiological responses in that patient. Thedegree of success in stereotactic surgery depends upon theexperience of the surgeon as well as the precision of

5、 thestereotactic instrument. Nevertheless, minimum standards ofaccuracy for stereotactic instruments that are within the rangeof variability of human anatomy must be maintained.1.2 For the purpose of this specification, a stereotacticinstrument is a guiding device used in human neurosurgery forthe p

6、urpose of directing an instrument or treating modality toa specific point within the brain by radiographic or othervisualization of landmarks.1.3 Stereotactic instruments must be constructed to affordthe surgeon reliably reproducible accuracy in placing instru-ments into target areas. Proper positio

7、ning of the probe is oftenverified by X rays to control errors in calculation and to correctdeflection of the probe during insertion. Physiological param-eters may be used to further define the optimal target.1.4 At the present time, stereotactic instruments are usedmost frequently, but not exclusiv

8、ely in the following opera-tions. The list is presented only to present examples and shouldnot be construed to restrict advances or developments of newprocedures. For some applications it is not required to hit apoint in space, but to hit a volume or make a lesion within amass. For that purpose, dev

9、ices other than those covered bythis specification may be employed, but should be restricted tosuch uses:1.4.1 Thalamotomy for parkinsonism and other types oftremor,1.4.2 Electrode implantation for epilepsy,1.4.3 Needle or magnetic insertion, or both, for aneurysmthrombosis,1.4.4 Thalamic or subthal

10、amic operations for dystonia,1.4.5 Thalamic or subthalamic operations for involuntarymovements such as chorea or hemiballismus,1.4.6 Ablation of deep cerebellar nuclei for spasticity,1.4.7 Cingulotomy and thalamic or subthalamic surgery forpain,1.4.8 Mesencephalotomy or tractotomy for pain,1.4.9 Abl

11、ations of subcortical temporal lobe structures fortreatment of epilepsy,1.4.10 Psychosurgical procedures,1.4.11 Implantation of depth stimulating electrodes for pain,1.4.12 Insertion of forceps or needle for obtaining biopsyspecimens,1.4.13 Foreign body removal,1.4.14 Implantation of radioactive mat

12、erial, and1.4.15 Biopsy or treatment of tumors.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regu

13、latory limitations prior to use.2. Referenced Documents2.1 NFPA Standard:NFPA 99 Health Care Facilities Code (56A and 76B-T)22.2 UL Standard:UL 544 Electrical, Medical, and Dental Equipment33. Terminology3.1 Descriptions of TermsThe following descriptions ofterms are for the purposes of this specifi

14、cation only. Othernomenclature may be used throughout the literature and byvarious manufacturers:1This specification is under the jurisdiction of ASTM Committee F04 onMedical and Surgical Materials and Devices and is the direct responsibility ofSubcommittee F04.31 on Neurosurgical Standards.Current

15、edition approved Feb. 1, 2008. Published March 2008. Originallyapproved in 1989. Last previous edition approved in 2002 as F1266 89 (2002).DOI: 10.1520/F1266-89R08.2Available from National Fire Protection Association (NFPA), 1 BatterymarchPark, Quincy, MA 02169-7471, http:/www.nfpa.org.3Available fr

16、om Underwriters Laboratories (UL), 333 Pfingsten Rd.,Northbrook, IL 60062-2096, http:/.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesNOTICE: This standard has either been superseded and replaced by a new version or withdrawn.Contact

17、ASTM International (www.astm.org) for the latest information13.1.1 anatomical accuracythe reliability or accuracy withwhich the tip of a probe can be introduced into a givenanatomical target. Because of anatomical variability, a givenanatomical structure or anatomical target may vary relative tothe

18、position of the reference atlas position of that structure.Consequently, it is not possible to relate the reliability of astereotactic apparatus to anatomical accuracy, but only tomechanical accuracy.3.1.2 anatomical targetthat anatomical structure withinthe central nervous system into which it is i

19、ntended to insert aprobe.3.1.3 anatomic variabilitya variation in position, size orconfiguration of an anatomical structure from one human brainto another.3.1.4 angular accuracythe accuracy to which the probeholder can be adjusted to a given angle from reference planes.3.1.5 angular scalethe scale o

20、n the stereotactic apparatuswhich indicates at which angle the electrode probe holderdirects a probe in relation to one or more reference planes ofthe coordinate system of the apparatus.3.1.6 atlasa topographical map of the brain or spinal cordbased on autopsy studies, used to define the relationshi

21、pbetween anatomical structures and landmarks, sometimes in-cluding information about the anatomical variability.3.1.7 direct visualizationthe visualization of an anatomi-cal target by direct visual observation or roentgenographicallywith or without the assistance of air or contrast material.3.1.8 di

22、sconnect systema system to afford adequate accessto the patient.3.1.9 electrodea probe usually insulated except for aspecific portion or portions, commonly the end, which isstereotactically inserted into a desired anatomical target for thepurpose of recording electrical activity, stimulating nervous

23、tissue, producing a lesion in nervous tissue by passage of adirect or rapidly alternating electrical current, or measuringimpedance.3.1.10 framethat part of the stereotactic apparatus whichis attached to the skull.3.1.11 guide tubea tube through which an electrode orprobe can be directed to a target

24、. The tube imparts additionalstrength and less likelihood of deviation from a true trajectory.The guide tube can be attached to the electrode probe holder orstereotactic apparatus or attached to the electrode or insertionalprobe in a sleeve-like fashion.3.1.12 landmarka structure than can be visuali

25、zedradiographically, with or without contrast material or air, fromwhich measurements are made to define the position of thestereotactic target.3.1.13 linear accuracythe positioning accuracy of a linearmovement of the probe holder in the direction of one or moreof the reference planes of the stereot

26、actic apparatus.3.1.14 linear scalethe scale on the stereotactic apparatuswhich indicates linear movement of the electrode probe holderin relation to one or more of the reference planes, or a pointwithin the coordinate system.3.1.15 mechanical accuracythe accuracy with which astereotactic apparatus

27、can bring the tip of a straight probe to agiven coordinate within the stereotactic coordinate system.3.1.16 probeany type of long, thin device stereotacticallyinserted into a desired anatomical target. The most commontype of probe is an electrode, but probes can also becryoprobes, leukotomes, needle

28、s, biopsy devices, devices toinsert radioactive or other material, magnetic probes, needlesor injection devices, cannulae, forceps, and so forth.3.1.17 probe holderthat part of the stereotactic apparatusthat holds the electrode or probe. It is ordinarily attached to theframe either directly or indir

29、ectly, depending on the type ofapparatus.3.1.18 simulated skullany device to which a stereotacticapparatus might be attached to simulate the stresses imparted tothe apparatus when it is attached to the patients skull. Becauseof the differences in how various stereotactic apparatus areattached to the

30、 skull, no universal simulated skull can bedescribed.3.1.19 stereotactic apparatusany guiding device used inhuman neurosurgery for the purpose of directing a probe intothe brain, under guidance of radiographic visualization oflandmarks, direct radiographic visualization, or other means.3.1.20 stereo

31、tactic targetthat point in space, defined bythe coordinate system of some types of stereotactic apparatus,to which it is desired to insert a probe.3.1.21 undamagedin regard to electrodesnot damagedto an extent where the electrical properties would be affected asto make an electrode unacceptable for

32、clinical use.4. Classification of Stereotactic Apparatus4.1 Four basic types of stereotactic instruments, or a com-bination thereof are presently used and will be referred toherein as the arc (polar coordinate), rectilinear type, (c) aimingtype, and (d) interlocking arc type. Types with comparable o

33、rgreater accuracy should be recognized as they are developed.4.1.1 Arc TypeThe arc type apparatus is constructedaccording to the spherical radius principle so that the targetpoint lies at the center of an arc along which the probe holdermoves so that when a probe inserted into the probe holderperpen

34、dicular to a tangent of the arc and for a distance equal tothe radius of the arc, the tip of the probe arrives at a singlepoint in space, the center of the circle defined by the arc, thatis, the stereotactic target. This occurs regardless of the positionof the probe holder along the arc or the angle

35、 the arc subtendswith the base of the apparatus. Generally, the apparatus isadjusted so that the stereotactic target point corresponds to theanatomical target point, so the probe might be introduced atany angle yet accurately find the stereotactic target.4.1.2 Rectilinear TypeThe rectilinear type pr

36、ovides indi-vidually for the longitudinal, transverse and vertical move-ments of the probe and probe holder. Ordinarily, a rectilinearstereotactic apparatus also provides for sagittal and transverseangle adjustment as well. Calculations can be made so theprobe can be adjusted to the scales to aim an

37、d advance theprobe to the desired target point along a predeterminedtrajectory.F1266 89 (2008)24.1.3 Aiming TypeThe aiming type of stereotactic appara-tus is attached to a burr hole in the skull. The angles ofinsertion can be adjusted and the depth of insertion of theelectrode or probe controlled so

38、 the probe can be pointed to thedesired target point and then advanced to it.5. Significance and Use5.1 The purpose of a stereotactic apparatus is to guide theadvance of an electrode or other probe accurately and in acontrolled fashion to a given point in space, relative to theapparatus, to the ster

39、eotactic target. Thus, when the apparatusis attached to the skull, the electrode or probe can be advancedto a given geographical point within the cranial cavity, near thebase of the skull or in the spinal canal.5.1.1 As generally employed, the ventricles or cavitieswithin the brain or other neurosur

40、gical landmarks are identifiedroentgenographically by other means and, by consulting anatlas or other table, the mean distance and direction betweenthe visualized landmark and a given anatomical target aremeasured. The electrode or probe is then inserted to thestereotactic target, that is, the point

41、 in space which is calculatedfrom the distance and direction between the visualized land-mark and the desired target in relation to the coordinate systemof the stereotactic apparatus.5.1.2 It is recognized that there is considerable anatomicalvariability in the size and shape of the central nervous

42、systemso that the target point that is identified from the atlas or tableis only approximate. Usually, where possible, physiologicalverification may also be obtained. One must distinguish be-tween the anatomical accuracy, which is inexact because of thevariability of brains, and the mechanical accur

43、acy, which is afunction of the precision of the stereotactic instrument.5.1.3 The requirements set forth herein are concerned onlywith the mechanical accuracy of stereotactic instruments. It isalso recognized that once minimum standards for mechanicalaccuracy have been obtained, increased mechanical

44、 precisionwill not necessarily lead to increased anatomical precision.6. Application6.1 Attachment to the SkullIt is necessary to fix thestereotactic apparatus to the skull firmly in order to maintain anaccurate relationship between the stereotactic apparatus and theskull. Those stereotactic apparat

45、us which are attached to aplatform or operating table shall provide for the rigid fixationof the skull to the apparatus or to the supporting platform.There shall be no visible movement of the frame of theapparatus in relation to the skull with the application of forcesof magnitude and direction as w

46、ould ordinarily be encounteredduring stereotactic surgery. Furthermore, fixation shall besecured enough to maintain mechanical accuracy. Design andconstruction of the apparatus shall be such that forces inciden-tal to screwing its attachment pins into the skull do not distortthe system to the extent

47、 of compromising its mechanicalaccuracy.6.2 Access for Radiology or Other VisualizationSince thecentral nervous system landmarks are identified roentgeno-graphically or by other means, the apparatus or that part of theapparatus from which movements are made, when properlyapplied to the patient, shal

48、l be arranged in such a way thatradiographs can be made in more than one plane or othervisualization obtained. Means shall also be available to repo-sition the X-ray tubes accurately and conveniently. The ste-reotactic apparatus shall be constructed in such a way that nomechanical part interferes wi

49、th X-ray, computerized tomogra-phy or other necessary visualization of landmarks during thepart of the procedure when radiographs are being made.6.3 Accuracy of the Probe PlacementThe accuracy ofplacement in an anatomical target is dependent on anatomicalvariability which exceeds the mechanical inaccuracies of thestereotactic system. Nevertheless, specifications for mechani-cal precision, to a practical extent, are appropriate to obtainmaximum target accuracy with an electrode or other probe. Ingeneral, the mechanical precision of a

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1