1、2010年新疆农七师高级中学高二第二学期第二阶段考试数学(文)试题 选择题 在 中 , 分别为 上的点 ,且 , 的面积是 ,梯形 的面积为 ,则 的值为 ( ) A B C D 答案: B 如图 ,用与底面成 角的平面截圆柱得一椭圆截线 ,则该椭圆的离心率为 ( ) A B C D非上述结论 答案: A 如图 ,设 为 内的两点 ,且 , ,则 的面积与 的面积之比为 ( ) A B C D 答案: B 如图 , 是半圆 的直径 ,点 在半圆上 , 于点 ,且 ,设,则 ( ) A B C D 答案: A 不等式 的解集为( ) A B C D 答案: D 如图 ,在 和 中 , ,若 与
2、的周长之差为 ,则 的周长为 ( ) A B C D 25 答案: D 下列各式中,最小值等于 的是( ) A B C D 答案: D 直线: 3x-4y-9=0与圆: , (为参数 )的位置关系是( ) A相切 B相离 C直线过圆心 D相交但直线不过圆心 答案: D 如图所示 ,圆 O的直径 AB=6,C为圆周上一点 ,BC=3,过 C作圆的切线 l,过 A作 l的垂线 AD,垂足为 D,则 DAC =( ) A B C D 答案: B 已知点 的极坐标是 ,则过点 且垂直极轴的直线方程是( ) A B C D 答案: C 如图甲 ,四边形 是等腰梯形 , .由 4个这样的等腰梯形可以拼出图
3、乙所示的平行四边形,则四边形 中 度数为 ( ) A B C D 答案: C 试题分析:由于上底和两腰长已知,故要求梯形面积,关键是要找出底边上和高,由于图形中无法再分析出边与边的关系,所以我们可以从角的方向入手,求梯形的内角。解:设等腰梯形的底角为 ,则由图可知, +=180,即=60故选 C. 考点:梯形 点评:本小题主要考查梯形与平行四边形的有关知识,以及分析问题和解决问题的能力,以及转化与化归的思想方法本题的切入点是求梯形的内角,如何由已知分析出该点,是解题的关键 曲线的极坐标方程 化为直角坐标为( ) A B C D 答案: B 填空题 圆内接四边形 ABCD中, . 答案: 已知
4、为 O的直径 ,弦 、 交于点 ,若 ,则 = 答案: 如图 ,在 ABC中 ,AB AC, C 720, O过 A、 B两点且与 BC相切于点 B,与 AC交于点 D,连结 BD,若 BC ,则 AC . 答案: 在极坐标系中,以 为圆心, 为半径的圆的极坐标方程是 。 答案: 解答题 (本题满分 10)如图所示,已知 AB为 O的直径, AC为弦, ,交AC于点 D,BC=4cm, ( 1)求 OD的长; ( 2)若 ,求 O的直径 . 答案:( 1) 2 ( 2) 8 (本小题满分 12分 )在直角坐标系 XOY中,以 O为极点, X轴正半轴为极轴建立极坐标系。曲线 C的极坐标方程是:
5、, M,N分别是曲线 C与 X、 Y轴的交点。 ( 1)写出 C的直角坐标系方程。并求 M,N的极坐标。 ( 2)设 MN的中点为 P,求直线 OP的极坐标方程。 答案: ( 1)曲线 C: M(2,0) N( ) ( 2) (说明:写成 也正确 ) (本小题满分 12分 ) 已知圆 O1和 O2交于 A、 B两点, AC为圆 O1的切线,过B作两圆的割线 DE交 AC于 P。 ( 1)求证: AD/EC ( 2)若 AD是圆 O2的切线,且 PA=6,PC=2,BD=9,求 AD的长。答案:( 1)证明略( 2) AD=12 (本小题满分 12分 )已知 :如右图 ,在等腰梯形 ABCD中
6、,AD BC,AB DC,过点 D作 AC的平行线 DE,交 BA的延长线于点 E 求证:( 1) ABC DCB ( 2) DE DC AE BD 答案:证明见 (本小题满分 12分 )已知函数 f(x)=|x-8|-|x-4|。 ( 1)在答题卡相应的坐标系上作出 y=f(x)的图像。 ( 2)解关于 x的不等式 f(x)2。 答案:略 (本小题满分 12分 )已知曲线 C的极坐标方程是 =1,以极点为原点,极轴为 轴的正半轴建立平面直角坐标系,直线 的参数方程为 为参数)。 ( 1)写出直线 与曲线 C的直角坐标方程; ( 2)设曲线 C经过伸缩变换 得到曲线 ,设曲线 上任一点为,求 的最小值。 答案:( 1) ( 2) 4