第16章 集成运算放大器.ppt

上传人:explodesoak291 文档编号:374585 上传时间:2018-10-06 格式:PPT 页数:80 大小:1.36MB
下载 相关 举报
第16章 集成运算放大器.ppt_第1页
第1页 / 共80页
第16章 集成运算放大器.ppt_第2页
第2页 / 共80页
第16章 集成运算放大器.ppt_第3页
第3页 / 共80页
第16章 集成运算放大器.ppt_第4页
第4页 / 共80页
第16章 集成运算放大器.ppt_第5页
第5页 / 共80页
亲,该文档总共80页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第16章 集成运算放大器,16.1 集成运算放大器的简单介绍,16.2 运算放大器在信号运算方面的应用,16.4 运算放大器在波形产生方面的应用,16.8 使用运算放大器应注意的几个问题,16.6 集成功率放大器,16.5 运算放大器在信号测量方面的应用,16.3 运算放大器在信号处理方面的应用,16.7 运算放大电路中的负反馈,1. 了解集成运放的基本组成及主要参数的意义。 2. 理解运算放大器的电压传输特性,理解理想运算放大器并掌握其基本分析方法。 3. 理解用集成运放组成的比例、加减、微分和积分运算电路的工作原理,了解有源滤波器的工作原理。 4. 理解电压比较器的工作原理和应用。,本章要

2、求,第16章 集成运算放大器,16.1 集成运算放大器的简单介绍,16.1.1 集成运算放大器的特点,集成运算放大器是一种具有很高放大倍数的多级直接耦合放大电路。是发展最早、应用最广泛的一种模拟集成电路。,集成电路分类,模拟集成电路,数字集成电路,集成运算放大器、集成,功率放大器、集成稳压电源、集成A/D,D/A等。,在集成电路工艺中难于制造电感元件;制造容量大于200pF的电容也比较困难,因而放大器各级之间都采,(1)级间采用直接耦合方式,16.1.1 集成运算放大器的特点,用直接耦合,必须使用电容的场合,也大多采用外接的方法。,(2)电路结构和参数具有对称性,集成电路中的电阻是由硅半导体的

3、体电阻构成,阻值大约为10030K,且阻值精度不高,因此常常用晶体管恒流源代替电阻(动态电阻);必须使用直流高阻值的场合,也大多采用外接的方法。,由于集成电路中的各个元件是通过同一工艺过程制作在同一硅片上,同一片内的元件参数绝对值有同向的偏差,温度均一性好,(3)用有源器件代替无源器件,16.1.2 电路的简单说明,一、电路的基本组成及作用,输入级:要求输入电阻高,差模放大倍数高,抑制零点漂移和共模干扰信号的能力强。都采用差分放大电路。,中间级:要求电压放大倍数高。常采用带恒流源的共发射极放大电路构成。,偏置电路:为各级放大电路提供稳定和合适的偏置电流,决定各级的静态工作点,一般由恒流源电路构

4、成。,一、镜像电流源,由电路对称,当满足2时,,IC2作为提供给某个放大器的偏置电流。,二、比例电流源,缺点:IC受电源电压波动的影响。不适用提供微安级的电流。,三、微电流源,中间级:,提供足够的电压放大倍数,本身还应有高的输入电阻,以减小对前级的影响。,输出级:与负载相接,要求输出电阻低,带负载能力强,一般由互补对称电路或射极输出器构成。,输入级,中间级,输出级,同相 输入端,输出端,反相 输入端,16.1.3 主要参数,1. 最大输出电压 UOPP能使输出和输入保持不失真关系的最大输出电压。,2. 开环差模电压增益 Auo运放没有接反馈电路时的差模电压放大倍数。 Auo愈高,所构成的运算电

5、路越稳定,运算精度也越高。,6. 共模输入电压范围 UICM运放所能承受的共模输入电压最大值。超出此值,运放的共模抑制性能下降,甚至造成器件损坏。,愈小愈好,3. 输入失调电压 UIO 4. 输入失调电流 IIO 5. 输入偏置电流 IIB,16.1.4 理想运算放大器及其分析依据,1. 理想运算放大器,Auo , rid , ro 0 , KCMR ,2. 电压传输特性 uo= f (ui),线性区: uo = Auo(u+ u),非线性区: u+ u 时, uo = +Uo(sat) u+ u 时, uo = Uo(sat),线性区,理想特性,实际特性,饱和区,O,Auo 高: 80dB1

6、40dB rid 高: 105 1011 ro 低: 几十 几百 KCMR高: 70dB130dB,集成运算放大器的等效电路模型(1) 线性工作区,3. 理想运放工作在线性区的特点,因为 uo = Auo(u+ u ),所以(1) 差模输入电压约等于 0即 u+= u ,称“虚短”,(2) 输入电流约等于 0即 i+= i 0 ,称“虚断”,电压传输特性,Auo越大,运放的线性范围越小,必须加负反馈才能使其工作于线性区。,O,4. 理想运放工作在饱和区的特点,(1) 输出只有两种可能, +Uo(sat) 或Uo(sat),(2) i+= i 0,仍存在“虚断”现象,电压传输特性,当 u+ u

7、时, uo = + Uo(sat) u+ u 时, uo = Uo(sat) 不存在 “虚短”现象,1.线性应用 电路结构上存在从输出端到反向输入端的负反馈支路输入信号幅度足够小,以保证集成运算放大器的输出处于最大输出电压的范围内。,集成运算放大器的应用,2.非线性应用 电路结构上,集成运算放大器处于开环(无反馈)或存在从输出端到同相输入端的正反馈支路,输出总是处于饱和状态,即输出在正、负最大值之间变化。,集成运算放大器电路分析的方法首先判断应用类型,然后利用理想运算放大器的特征对电路进行分析。,16.2 运算放大器在信号运算方面的运用,集成运算放大器与外部电阻、电容、半导体器件等构成闭环电路

8、后,能对各种模拟信号进行比例、加法、减法、微分、积分、对数、反对数、乘法和除法等运算。,运算放大器工作在线性区时,通常要引入深度负反馈。所以,它的输出电压和输入电压的关系基本决定于反馈电路和输入电路的结构和参数,而与运算放大器本身的参数关系不大。改变输入电路和反馈电路的结构形式,就可以实现不同的运算。,16.2.1 比例运算,1. 反相比例运算,(1)电路组成,以后如不加说明,输入、输出的另一端均为地()。,(2)电压放大倍数,因虚短, 所以u=u+= 0, 称反相输入端“虚地” 反相输入的重要特点,因虚断,i+= i = 0 ,,所以 i1 if,因要求静态时u+、 u 对地电阻相同, 所以

9、平衡电阻 R2 = R1 / RF,动画,16.2.1 比例运算,1. 反相比例运算,电压放大倍数,反馈电路直接从输 出端引出电压反馈,输入信号和反馈信号加在 同一输入端并联反馈,反馈信号使净输入 信号减小负反馈,电压并联负反馈,输入电阻低, 共模电压 0,2. 同相比例运算,输入电阻高 共模电压 = ui,电压放大倍数,电压串联负反馈,输入信号和反馈信号分别 加两个输入端串联反馈,反馈电路直接从输 出端引出电压反馈,因虚短,所以 u = ui , 反相输入端不“虚地”,反馈信号使净输入 信号减小负反馈,动画, 电压并联负反馈,输入、输出电阻低,ri = R1。共模输入电压低。,结论:, Au

10、f为负值,即 uo与 ui 极性相反。因为 ui 加在反相输入端。, Auf 只与外部电阻 R1、RF 有关,与运放本身参数无关。, | Auf | 可大于 1,也可等于 1 或小于 1 。, 因u= u+= 0 , 所以反相输入端“虚地”。,例:电路如下图所示,已知 R1= 10 k ,RF = 50 k 。 求:1. Auf 、R2 ;2. 若 R1不变,要求Auf为 10,则RF 、 R2 应为 多少?,解:1. Auf = RF R1 = 50 10 = 5,R2 = R1 RF =10 50 (10+50) = 8.3 k,2. 因 Auf = RF / R1 = RF 10 = 1

11、0 故得 RF = Auf R1 = (10) 10 =100 kR2 = 10 100 (10 +100) = 9. 1 k,2. 同相比例运算,因虚断,所以u+ = ui,(1)电路组成,(2)电压放大倍数,因虚短,所以 u = ui , 反相输入端不“虚地”,因要求静态时u+、u对地电阻相同, 所以平衡电阻R2=R1/RF, 电压串联负反馈,输入电阻高、输出电阻低,共模输入电压可能较高。,结论:, Auf 为正值,即 uo与 ui 极性相同。因为 ui 加在同相输入端。, Auf只与外部电阻 R1、RF 有关,与运放本身参数无关。, Auf 1 ,不能小于 1 。, u = u+ 0 ,

12、反相输入端不存在“虚地”现象。,当 R1= 且 RF = 0 时,,uo = ui , Auf = 1,称电压跟随器。,由运放构成的电压跟随器输入电阻高、输出电阻低,其跟随性能比射极输出器更好。,左图是一电压跟随器,电源经两个电阻分压后加在电压跟随器的输入端,当负载RL变化时,其两端电压 uo不会随之变化。,负载电流的大小 与负载无关。,例2:负载浮地的电压-电流的转换电路,1. 能测量较小的电压; 2. 输入电阻高,对被测电路影响小。,流过电流表的电流,16.2.2 加法运算电路,1. 反相加法运算电路,因虚短, u= u+= 0,平衡电阻:R2= Ri1 / Ri2 / RF,因虚断,i

13、= 0,所以 ii1+ ii2 = if,动画,2. 同相加法运算电路,方法1: 根据叠加原理ui1单独作用(ui20)时,,同理,ui2单独作用时,动画,方法2:,平衡电阻:Ri1 / Ri2 = R1 / RF,u+,u+=?,也可写出 u和 u+的表达式,利用 u= u+ 的性质求解。,1. 输入电阻低; 2. 共模电压低; 3. 当改变某一路输入电阻时,对其它路无影响;,同相加法运算电路的特点: 1. 输入电阻高; 2. 共模电压高; 3. 当改变某一路输入电阻时,对其它路有影响;,反相加法运算电路的特点:,16.2.3 减法运算电路,由虚断可得:,由虚短可得:,分析方法1:,如果取

14、R1 = R2 ,R3 = RF,如 R1 = R2 = R3 = RF,R2 / R3 = R1 / RF,输出与两个输入信号的差值成正比。,常用做测量 放大电路,动画,分析方法2:利用叠加原理减法运算电路可看作是反相比例运算电路与同相比例运算电路的叠加。,u+,16.2.4 积分运算电路,由虚短及虚断性质可得i1 = if,if =?,当电容CF的初始电压为 uC(t0) 时,则有,动画,若输入信号电压为恒定直流量,即 ui= Ui 时,则,积分饱和,线性积分时间,线性积分时间,Uo(sat),ui = Ui 0,ui = Ui 0,采用集成运算放大器组成的积分电路,由于充电电流基本上是恒

15、定的,故 uo 是时间 t 的一次函数,从而提高了它的线性度。,输出电压随时 间线性变化,Ui,Ui,将比例运算和积分运算结合在一起,就组成 比例-积分运算电路。,电路的输出电压,上式表明:输出电压是对输入电压的比例-积分,这种运算器又称 PI 调节器, 常用于控制系统中, 以保证自控系统的稳定性和控制精度。改变 RF 和 CF,可调整比例系数和积分时间常数, 以满足控制系统的要求。,16.2.5 微分运算电路,由虚短及虚断性质可得i1 = if,Ui,Ui,动画,比例-微分运算电路,上式表明:输出电压是对输入电压的比例-微分,控制系统中, PD调节器在调节过程中起加速作用,即使系统有较快的响

16、应速度和工作稳定性。,PD调节器,if,16.3 运放在信号处理方面的应用,16.3.1 有源滤波器,滤波器是一种选频电路。它能选出有用的信号,而抑制无用的信号,使一定频率范围内的信号能顺利通过,衰减很小,而在此频率范围以外的信号不易通过,衰减很大。,无源滤波器:由电阻、电容和电感组成的滤波器。,有源滤波器:含有运算放大器的滤波器。,缺点:低频时体积大,很难做到小型化。,优点:体积小、效率高、频率特性好。,按频率范围的不同,滤波器可分为低通、高通、带通和带阻等。,1. 有源低通滤波器,设输入为正弦波信号, 则有,故:,若频率 为变量,则电路的传递函数,其模为,当 0时,| T(j)| 衰减很快

17、,显然,电路能使低于0的信号顺利通过,衰减很小,而使高于0的信号不易通过,衰减很大,称一 阶有源低通滤波器。,为了改善滤波效果,使 0 时信号衰减得更快些,常将两节RC滤波环节串接起来,组成二阶有源低通滤波器。,2. 有源高通滤波器,设输入为正弦波信号,则有,故:,可见,电路使频率大于0 的信号通过 ,而小于0 的信号被阻止,称为有源高通滤波器。,若频率 为变量,则电路的传递函数,其模为,模拟开关,模拟输入信号,1. 电路,16.3.2 采样保持电路,采样保持电路,多用于模 - 数转换电路(A/D)之前。由于A/D 转换需要一定的时间,所以在进行A/D 转换前必须对模拟量进行瞬间采样,并把采样

18、值保存一段时间,以满足A/D 转换电路的需要。,用于数字电路、计算机控制及程序控制等装置中。,采样存储 电容,控制信号,电压跟随器,2. 工作原理,16.3.2 采样保持电路,1. 电路,采样阶段: uG为高电平, S 闭合(场效应管导通),ui对存储电容C充电, uo= uC = ui 。,保持阶段: uG为 0, S 断开(场效应管截止),输出保持该阶段开始瞬间的值不变。,采样速度愈高,愈接近模拟信号的变化情况。,16.3.3 电压比较器,电压比较器的功能:电压比较器用来比较输入信号与参考电压的大小。当两者幅度相等时输出电压产生跃变,由高电平变成低电平,或者由低电平变成高电平。由此来判断输

19、入信号的 大小和极性。,用途:数模转换、数字仪表、自动控制和自动检测等技术领域,以及波形产生及变换等场合 。,运放工作在开环状态或引入正反馈。,理想运放工作在饱和区的特点:,1. 输出只有两种可能 +Uo (sat) 或Uo (sat) 当 u+ u 时, uo = +Uo (sat) u+ u 时, uo = Uo (sat) 不存在 “虚短”现象 2. i+= i 0 仍存在“虚断”现象,电压传输特性,电压传输特性,Uo(sat),+Uo(sat),运放处于开环状态,1. 基本电压比较器,阈值电压(门限电平):输出跃变所对应的输入电压。,当 u+u 时,uo= +Uo (sat) u+u

20、时,uo= Uo (sat),即 uiUR 时,uo = Uo (sat),可见,在 ui =UR 处输出电压 uo 发生跃变。,参考电压,动画,单限电压比较器:当 ui 单方向变化时, uo 只变化一次。,ui UR,uo=+ Uo (sat) ui UR,uo= Uo (sat),输入信号接在反相端,输入信号接在同相端,输入信号接在反相端,输入信号接在同相端,输出带限幅的电压比较器,设稳压管的稳定电压为UZ, 忽略稳压管的正向导通压降 则 ui UR,uo = UZ,uiUR 时,uo = Uo (sat),过零电压比较器,利用电压比较器 将正弦波变为方波,2. 滞回比较器,上门限电压,下

21、门限电压,电路中引入正反馈 (1) 提高了比较器的响应速度; (2) 输出电压的跃变不是发生在同一门限电压上。,当 uo = + Uo(sat), 则,当 uo = Uo(sat), 则,门限电压受输 出电压的控制,R2,上门限电压 U+ : ui 逐渐增加时的门限电压,下门限电压U“+: ui 逐渐减小时的门限电压,两次跳变之间具有迟 滞特性滞回比较器,根据叠加原理,有,改变参考电压UR,可使传输特性沿横轴移动。,当参考电压UR不等于零时,定义:回差电压,与过零比较器相比具有以下优点: 1. 改善了输出波形在跃变时的陡度。 2. 回差提高了电路的抗干扰能力,U越大,抗干扰能力越强。,结论:

22、1. 调节RF 或R2 可以改变回差电压的大小。 2. 改变UR可以改变上、下门限电压, 但不影回差电压U。,电压比较器在数据检测、自动控制、超限控制报警和波形发生等电路中得到广泛应用。,解:对图(1) 上门限电压,下门限电压,例:电路如图所示,Uo(sat) =6V,UR = 5V,RF = 20k,R2 =10k,求上、下门限电压。,(1),(2),解:对图(2),例:电路如图所示,Uo(sat) =6V,UR = 5V,RF = 20k,R2 =10k,求上、下门限电压。,(1),(2),(1),(2),16.4 运放在波形产生方面的应用,波形发生器的作用:产生一定频率、幅值的波形(如正

23、弦波、方波、三角波、锯齿波等)。 特点:不用外接输入信号,即有输出信号。,16.4.1 矩形波发生器,1. 电路结构,由滞回比较器、,RC充放电电路组成,,电容电压uC 即是比较器的输入电压,,2. 工作原理,设电源接通时, uo = +Uo(sat) ,uC(0) = 0。,电阻R2两端的电压UR即是比较器的参考电压。,uo 通过 RF 对电容C充电, uC 按指数规律增长。,充电,当 uo = +Uo(sat)时,电容充电, uC上升,,电容放电, uC下降,,当uC= UR 时,uo 跳变成 Uo(sat),当 uC= UR 时,uo 跳变成 +Uo(sat) ,电容又重新充电。,放电,

24、2. 工作原理,动画,3. 工作波形,T = T1+T2,电容充放电过程,uC 的响应规律为,4. 周期与频率,在充电过程中,在放电过程中,矩形波的周期,矩形波的频率,充放电时间常数相同: = RC,矩形波常用于数字电路中作为信号源,A1:滞回比较器 因 u = 0 ,所以当 u+ = 0 时, A1状态改变,16.4.3 三角波发生器,1. 电路结构,A2:反相积分电路,2. 工作原理,A1:滞回比较器 因 u- = 0 ,所以当 u+ = 0时,A1状态改变,输出 uo1 改变(+UZ 跃变到UZ 或 UZ 跃变到 +UZ),,当,同时积分电路的输入、输出电压也随之改变。,动画,3. 工作

25、波形,4. 周期与频率,T = T1+ T2 = 2T1 = 2T2,(1) 改变比较器的输出 uo1、电阻R1 、R2 即可改变三角波的幅值。(2) 改变积分常数RC 即可改变三角波的频率。,动画,16.4.3 锯齿波发生器,1. 电路,三角波发生器,在三角波发生器的电路中,使积分电路的正、反向积分的时间常数不同,即可使其 输出锯齿波。,2. 波形,16.4.3 锯齿波发生器,1. 电路,动画,16.5 运放在信号测量方面的应用,在自动控制和非电测量等系统中,常用各种传感器将非电量(如温度、应变、压力和流量等) 的变化转换为电信号(电压或电流) ,而后输入系统。但这种非电量的变化是缓慢的,电

26、信号的变化量常常很小 ( 一般只有几毫伏到几十毫伏),所以要将电信号加以放大。测量放大电路的作用是将测量电路或传感器送来的微弱信号进行放大,再送到后面电路去处理。一般对测量放大电路的要求是输入电阻高、噪声低、稳定性好、精度及可靠性高、共模抑制比大、线性度好、失调小、并有一定的抗干扰能力。,测量放大器的原理电路,对A1和A2有,对A3有,改变R1的阻值,即可调节电压放大倍数,16.6 集成功率放大器,使喇叭相当于纯电阻负载,去耦,防止低频自激,消振,防止高频自激,集成功放LM386接线图,特点:工作可靠、使用方便。只需在器件外部适当连线,即可向负载提供一定的功率。,16.7 运算放大器电路中的负

27、反馈,17.7.1 并联电压负反馈,设输入电压 ui 为正,,差值电流 id = i1 if,各电流的实际方向如图,if 削弱了净输入电流(差值电流) 负反馈,反馈电流,取自输出电压电压反馈,反馈信号与输入信号在输入端以电流的形式比较并联反馈,特点:输入电阻低、输出电阻低,17.7.2 串联电压负反馈,设输入电压 ui 为正,,差值电压 ud =ui uf,各电压的实际方向如图,uf 削弱了净输入电压(差值电压) 负反馈,反馈电压,取自输出电压电压反馈,反馈信号与输入信号在输入端以电压的形式比较 串联反馈,特点:输入电阻高、输出电阻低,17.7.3 串联电流负反馈,设输入电压 ui 为正,,差

28、值电压 ud =ui uf,各电压的实际方向如图,uf 削弱了净输入电压(差值电压) 负反馈,反馈电压,取自输出电流 电流反馈,反馈信号与输入信号在输入端以电压的形式比较串联反馈,uf =Rio,特点:输出电流 io 与负载电阻RL无关同相输入恒流源电路或电压-电流变换电路,17.7.4 并联电流负反馈,设输入电压 ui 为正,,差值电流 id = i1 if,各电流的实际方向如图,if 削弱了净输入电流(差值电流) 负反馈,反馈电流,取自输出电流电流反馈,反馈信号与输入信号在输入端以电流的形式比较并联反馈,17.7.4 并联电流负反馈,设输入电压 ui 为正,,差值电流 id = i1 if

29、,各电流的实际方向如图,if 削弱了净输入电流(差值电流) 负反馈,反馈电流,取自输出电流电流反馈,特点:输出电流 io 与负载电阻RL无关反相输入恒流源电路,运算放大器电路反馈类型的判别方法:,1. 反馈电路直接从输出端引出的,是电压反馈; 从负载电阻RL的靠近“地”端引出的,是电流反馈;2. 输入信号和反馈信号分别加在两个输入端(同相和反相)上的,是串联反馈;加在同一个输入端(同相或反相)上的,是并联反馈;3. 对串联反馈,输入信号和反馈信号的极性相同时,是负反馈;极性相反时,是正反馈;4. 对并联反馈,净输入电流等于输入电流和反馈电流之差时,是负反馈;否则是正反馈。,例1:,试判别下图放

30、大电路中从运算放大器A2输出端引至A1输入端的是何种类型的反馈电路。,解:,因反馈电路直接从运算放大器A2的输出端引出,所以是电压反馈;,因输入信号和反馈信号分别加在反相输入端和同相输入端上,所以是串联反馈;因输入信号和反馈信号的极性相同,所以是负反馈。,串联电压负反馈,先在图中标出各点的瞬时极性及反馈信号;,例2:,试判别下图放大电路中从运算放大器A2输出端引至A1输入端的是何种类型的反馈电路。,解:,因反馈电路是从运算放大器A2的负载电阻RL的靠近“地”端引出的,所以是电流反馈;,因输入信号和反馈信号均加在同相输入端上,所以是并联反馈;,因净输入电流 id 等于输入电流和反馈电流之差,所以是负反馈。,并联电流负反馈,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教学课件 > 大学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1