ASCE 4-16-2017 Seismic Analysis of Safety-Related Nuclear Structures.pdf

上传人:visitstep340 文档编号:453909 上传时间:2018-11-23 格式:PDF 页数:202 大小:2.64MB
下载 相关 举报
ASCE 4-16-2017 Seismic Analysis of Safety-Related Nuclear Structures.pdf_第1页
第1页 / 共202页
ASCE 4-16-2017 Seismic Analysis of Safety-Related Nuclear Structures.pdf_第2页
第2页 / 共202页
ASCE 4-16-2017 Seismic Analysis of Safety-Related Nuclear Structures.pdf_第3页
第3页 / 共202页
ASCE 4-16-2017 Seismic Analysis of Safety-Related Nuclear Structures.pdf_第4页
第4页 / 共202页
ASCE 4-16-2017 Seismic Analysis of Safety-Related Nuclear Structures.pdf_第5页
第5页 / 共202页
亲,该文档总共202页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、ASCE STANDARD ASCE/SEI 4-16 Seismic Analysis of Safety-Related Nuclear StructuresASCE STANDARD ASCE/SEI 4-16 Seismic Analysis of Safety-Related Nuclear Structures PUBLISHED BY THE AMERICAN SOCIETY OF CIVIL ENGINEERSLibrary of Congress Cataloging-in-Publication Data Names: American Society of Civil E

2、ngineers. Title: Seismic analysis of safety-related nuclear structures / American Society of Civil Engineers. Description:Reston,Virginia:AmericanSocietyofCivilEngineers,2017.|“ASCEstandard ASCE/SEI 4-16.” | Includes bibliographical references and index. Identi ers: LCCN 2016045567 (print) | LCCN 20

3、16056049 (ebook) | ISBN 9780784413937 (pbk. : alk. paper) | ISBN 9780784479988 (PDF) Subjects: LCSH: Nuclear facilitiesEvaluationStandardsUnited States. | Earthquake resistant designStandardsUnited States. | Nuclear facilitiesEarthquake effects. Classi cation: LCC TK9152.163 .A47 2017 (print) | LCC

4、TK9152.163 (ebook) | DDC 621.48/35dc23 LC record available at https:/lccn.loc.gov/2016045567 Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/bookstore | ascelibrary.org This standard was developed by a consensus standards developme

5、nt process that has been accredited by the American National Standards Institute (ANSI). Accreditation by ANSI, a voluntary accreditation body representing public and private sector standards development organizations in the United States and abroad, signi es that the standards development processus

6、edbyASCEhasmettheANSIrequirementsforopenness,balance,consensus,and due process. While ASCEs process is designed to promote standards that re ect a fair and reasoned consensus among all interested participants, while preserving the public health, safety, and welfare that is paramount to its mission,

7、it has not made an independent assessment of and does not warrant the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed herein. ASCE does not intend, nor should anyone interpret, ASCEs standards to replace the sound judgment of a competent p

8、rofessional, having knowledge and experience in the appropriate eld(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this standard. ASCE has no authority to enforce compliance with its standards and does not undert

9、ake to certifyproductsforcomplianceortorenderanyprofessionalservicestoanypersonorentity. ASCE disclaims any and all liability for any personal injury, property damage, nancial loss, or otherdamagesofanynaturewhatsoever,includingwithoutlimitationanydirect,indirect,special, exemplary, or consequential

10、 damages, resulting from any persons use of, or reliance on, this standard. Any individual who relies on this standard assumes full responsibility for such use. ASCE and American Society of Civil EngineersRegistered in U.S. Patent and Trademark Of ce. Photocopies and permissions. Permission to photo

11、copy or reproduce material from ASCE publicationscanberequestedbysendingane-mailtopermissionsasce.orgorbylocatinga title in ASCEs Civil Engineering Database (http:/cedb.asce.org) or ASCE Library (http:/ ascelibrary.org) and using the “Permissions” link. Errata: Errata, if any, can be found at https:

12、/doi.org/10.1061/9780784413937. Copyright 2017 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1393-7 (print) ISBN 978-0-7844-7998-8 (PDF) Manufactured in the United States of America. 2 22 12 01 91 81 7 12345ASCE STANDARDS In 2014, the Boardof Directionapprovedrevis

13、ions tothe ASCE Rules for Standards Committees to govern the writing and maintenance of standards developed by ASCE. All such stan- dards are developed by a consensus standards process managed by the ASCE Codes and Standards Committee (CSC). The consensus process includes balloting by a balanced sta

14、ndards committee and reviewing during a public comment period. All standards are updated or reaf rmed by the same process every ve to 10 years. Requests for formal interpretations shall be processed in accordance with Section 7 of ASCE Rules for Standards Committees, which are available at www.asce.

15、org. Errata,addenda,supplements,andinterpretations,ifany,forthis standard can also be found at www.asce.org. This standard has been prepared in accordance with recog- nized engineering principles and should not be used without the users competent knowledge for a given application. The publicationoft

16、hisstandardbyASCEisnotintendedtowarrant thattheinformationcontainedhereinissuitableforanygeneral or speci c use, and ASCE takes no position respecting the validity of patent rights. The user is advised that the determi- nation of patent rights or risk of infringement is entirely their own responsibi

17、lity. A complete list of currently available standards is available in the ASCE Library (http:/ascelibrary.org/page/books/ s-standards). iiiThis page intentionally left blankDEDICATION John D. Stevenson, Ph.D., P.E. May 23, 1933October 30, 2014 ASCE 4-16 is dedicated to Dr. John D. Stevenson: a lead

18、er in the nuclear energy industry for more than four decades, with seminal contributions in civil, structural, and mechanical engineering. John Stevenson graduated with a bachelor of science degree from Virginia Military Institute(VMI)in1954.AftertwoyearsofserviceintheU.S.ArmyCorpsofEngineers andsix

19、yearsofserviceonthefacultyofVMI,hecompleted amasterofsciencedegree at Case Institute of Technology in 1962. Two years of research on nuclear weapons effects at the IIT Research Institute in Chicago followed, after which he began doctoral studies at Case Western University. He completed his Ph.D. at

20、Case Western in 1968. Between 1968 and 1981, John held senior positions with Westinghouse Electric Company, Case Western Reserve University, McKee and Company, and Woodward Clyde Consultants. In 1981, he founded Stevenson and Associates, a consulting engineering rm, which grew rapidly and had of ces

21、 in Cleveland, Ohio; Boston, Massachusetts; Pilsen, Czech Republic; St. Petersburg, Russia; and Bucharest, Roma- nia. He also served as a consulting engineer to the U.S. Nuclear Regulatory Commis- sion, the Defense Nuclear Facility Safety Board, and the International Atomic Energy Agency. John recei

22、ved many awards over his career, including the American Society of Civil Engineers(ASCE)MosieffAwardin1971,theCivilEngineeroftheYearin1991given bytheClevelandSectionoftheASCE, theASCE Stephen BechtelAward in1995, and the American Society of Mechanical Engineers (ASME) Bernard Langer Award in 1997. A

23、 hallmark of Johns career in the nuclear industry, which spanned more than 40 years, is his many important contributions to codes and standards for safety-related nuclear structures published by the American Concrete Institute, American Institute of Steel Construction, American Nuclear Society, Amer

24、ican Society of Civil Engineers, and American Society of Mechanical Engineers: a broad spectrum of important contributions that collectively are likely unmatched in the nuclear industry in the United States. JohnwasanactivememberoftheASCECommitteeonDynamicAnalysisofNuclear Structures. He brought muc

25、h to the committee, including a deep understanding of mechanical components and systems and ASME codes and standards. Frequently, he was the lone advocate for mechanical engineering systems in a roomful of civil and structural engineers. His efforts to extend ASCE Standards 4 and 43 to address mecha

26、nical components and systems greatly expanded the utility of these standards, which will be forever appreciated. Through this dedication, the members of the ASCE 4 task committee acknowledge Johns seminal contributions to the seismic engineering of safety-related nuclear structures. His absence from

27、 committee deliberations and vigorous discussions is, and will be, sadly missed. Seismic Analysis of Safety-Related Nuclear Structures vThis page intentionally left blankCONTENTS PREFACE . xix ACKNOWLEDGMENTS. xxi ABBREVIATIONS AND NOTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28、. . . . . . . . . . . . . . xxiii DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix 1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introdu

29、ction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30、. . . . . . . . . . . . . . . . . 1 1.1.2.1 Types of Structures Covered by This Standard. . . . . . . . . . . . . . . . . . . . . . 1 1.1.2.2 Foundation Material Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.3 General Requirements . . . . . . . . . . . . . . . . . . .

31、 . . . . . . . . . . . . . . . . . . . . . . 1 1.1.3.1 Use of Analysis Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.3.2 Use of ASCE 4 with Other Codes and Standards . . . . . . . . . . . . . . . . . . . . 1 1.1.3.3 Alternative Methodologies. . . . . . . . . . . .

32、. . . . . . . . . . . . . . . . . . . . . 1 1.2 Seismic Quality Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Analysis Veri cation and Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Load Path Study. . . .

33、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Independent Peer Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1A Attachment: On Achieving Target Performance Goals (Nonmandatory). . . . . . . . . . . . . . . . . . . . 2

34、 1A.1 Purpose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1A.2 Expected Factors of Safety Achieved by Seismic Acceptance Criteria . . . . . . . . . . . . . . . . . . . . 2 1A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . .

35、 . . . . . . . . . . . . . . . . . . . . . . . . 2 1A.2.2 Estimation of Median Conservatism Introduced by Standard Seismic Acceptance Criteria. . . . . 3 1A.2.2.1 Median Strength Conservatism Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1A.2.2.2 Median Demand Conservatism Ratio . .

36、. . . . . . . . . . . . . . . . . . . . . . . . . 3 1A.2.2.3 Median Nonlinear Conservatism Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1A.2.2.4 Resulting Capacity Conservatism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 References for Attachment 1A . . . . . . . . . .

37、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 SEISMIC INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Performance-Based Design Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38、 5 2.2 Input Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Input Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Soil Properties . . . . . . . . . . . . . . . . . . . . . .

39、 . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Probabilistic Site Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.1 Soil Pro le Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2 Analysis Methodo

40、logy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2.1 Development of Low-Strain Realizations. . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3.2.2 Ground Response Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Strain-Compat

41、ible Soil Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Design Response Motions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5.1 Target Response Level . . . . . . . . . . . . . . . . . . . . . . . . . . .

42、 . . . . . . . . . . . . . 6 2.5.2 Types of Design Response Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5.3 Vertical Design Response Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Design Response SpectrumCompatible Ground Motion

43、 Histories . . . . . . . . . . . . . . . . . . . . . . 6 2.6.1 Requirements for DRS-Compatible Ground Motion Histories . . . . . . . . . . . . . . . . . . . . 6 2.6.2 Ground Motion History Development Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.7 Structures Sensitive to Low-Fr

44、equency Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.7.1 Response Spectra Shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Seismic Analysis of Safety-Related Nuclear Structures vii2.7.2 Ground Motion Histories . . . . . . . . . . .

45、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.8 Alternative De nitions of Design Ground Motions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 MODELING OF STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 General

46、 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Models for Horizontal and Vertical Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 Multistep and One-Step Methods of Seismic Response Analysis . . . . . . . . .

47、 . . . . . . . . . 9 3.1.2.1 Models for Multistep Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2.2 Models for One-Step Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.3 Discretization Considerations . . . . . . . . . . . . . . . . . . . . . .

48、. . . . . . . . . . . . . . . 10 3.1.3.1 Selection of Finite Element Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.3.2 Selection of Mesh Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.3.3 Stick Models. . . . . . . . . . . . . . . . . . . . . .

49、 . . . . . . . . . . . . . . . . . . 10 3.1.4 Alternate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Structural Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Modulus of Elasticity and Poissons Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1.1 Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1.2 Steel . . . . . . . . . . . . . . . . . . . . . . . . . . .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1