1、Designation: C497 05C497 13Standard Test Methods forConcrete Pipe, Manhole Sections, or Tile1This standard is issued under the fixed designation C497; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A num
2、ber in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 These test methods cover testing of concrete pipe, manhol
3、e sections, and tile. The test methods described are used inproduction testing and acceptance testing to evaluate the properties provided for in the specifications.1.2 The test methods appear in the following order:SectionExternal Load Crushing Strength 4Flat Slab Top 5Core Strength 6Absorption 7Hyd
4、rostatic 8PermeabilityManhole Step910Cylinder Strength 11Gasket Lubricant 12Joint Shear 13Alkalinity 14Gasket Measurements 151.3 The test specimens shall not have been exposed to a temperature below 40F for the 24 h immediately preceding the test.1.4 If any test specimen fails because of mechanical
5、reasons such as failure of testing equipment or improper specimenpreparation, it shall be discarded and another specimen taken.1.5 Specimens shall be selected in accordance with the specifications for the type of pipe or tile being tested.1.6 A complete metric companion to Test Methods C497 has been
6、 developedC497M; therefore, no metric equivalents arepresented in these methods.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety and health practices and det
7、ermine the applicability of regulatorylimitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C31/C31M Practice for Making and Curing Concrete Test Specimens in the FieldC39/C39M Test Method for Compressive Strength of Cylindrical Concrete SpecimensC42/C42M Test Method for Obtaining and
8、Testing Drilled Cores and Sawed Beams of ConcreteC617 Practice for Capping Cylindrical Concrete SpecimensC670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction MaterialsC822 Terminology Relating to Concrete Pipe and Related ProductsC1231/C1231M Practice for Use o
9、f Unbonded Caps in Determination of Compressive Strength of Hardened Concrete CylindersD2240 Test Method for Rubber PropertyDurometer HardnessE4 Practices for Force Verification of Testing Machines1 These test methods are under the jurisdiction of ASTM Committee C13 on Concrete Pipe and are the dire
10、ct responsibility of Subcommittee C13.09 on Methods of Test.Current edition approved Oct. 1, 2005Feb. 1, 2013. Published October 2005March 2013. Originally approved in 1962. Last previous edition approved in 20042005 asC497 04C497 05. 1. DOI: 10.1520/C0497-05.10.1520/C0497-13.2 For referencedASTM st
11、andards, visit theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an
12、 ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as publis
13、hed by ASTM is to be considered the official document.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13. Terminology3.1 DefinitionsFor definitions of terms relating to concrete pipe, see Terminology C822.4. External Load Crushing Stre
14、ngth Test by the Three-Edge Bearing Test Method4.1 Summary of Test MethodThe test specimen is tested in a machine designed to apply a crushing force upon the specimenin a plane through the vertical axis extending along the length of the specimen.4.2 Significance and UseThe crushing test shall be eit
15、her a quality control test performed to establish that the finished,shippable pipe has sufficient strength to withstand the crushing loads stated in the specifications or a proof of design test performedto prove the adequacy of design.4.3 Apparatus:4.3.1 The testing machine shall be of any type of s
16、ufficient capacity and shall be capable of providing the rate of loadingprescribed in 4.5.3.4.3.2 The testing machine shall be substantial and rigid throughout, so that the distribution of the load will not be affectedappreciably by the deformation or yielding of any part.4.3.3 The three-edge-bearin
17、g method of loading shall be used. The test specimen shall be supported on a lower bearing of twoparallel longitudinal strips and the load applied through an upper bearing (Figs. 1-4). At the option of the manufacturer, either orboth the lower bearing and the upper bearing shall extend the full leng
18、th or any portion of the length of the specimen. Fig. 54.3.4 The lower bearings shall consist of wood or hard rubber strips. Wooden strips shall be straight, have a cross section ofnot less than 2 in. in width and not less than 1 in. nor more than 112 in. in height and shall have the top inside corn
19、ers roundedto a radius of 12 in. Hard rubber strips shall have a durometer hardness of not less than 45 nor more than 60. They shall berectangular in cross section, having a width of not less than 2 in., a thickness of not less than 1 in. nor more than 112 in., and shallhave the top inside corner ro
20、unded to a radius of 12 in.4.3.5 The lower bearing strips shall be fastened to a wooden or steel beam or directly to a concrete base, any of which shallprovide sufficient rigidity so that deflection is not greater than 1720 of the specimen length when the maximum load is applied. Therigid base shall
21、 be at least 6 in. wide. The interior vertical sides of the strips shall be parallel and spaced a distance apart of notmore than 1 in./ft of specimen diameter, but in no case less than 1 in. The bearing faces of the lower strips shall not vary froma straight line vertically or horizontally by more t
22、han 132 in./ft of length under no load.4.3.6 The upper bearing shall be a rigid wood beam with or without an attached hard rubber strip. The wood shall be sound,free of knots, and straight and true from end to end. It shall be fastened to a steel or wood-faced steel beam of such dimensionsthat defle
23、ctions under maximum load will not be greater than 1720 of the specimen length. The bearing face of the upper bearingshall not deviate from a straight line by more than 132 in./ft of length. When a hard rubber strip is used on the bearing face it shallhave a durometer hardness of not less than 45 no
24、r more than 60, and shall have a width of not less than 2 in. and a thickness ofnot less than 1 in. nor more than 112 in. and shall be secured to a wood beam meeting the above requirements.4.3.7 If mutually agreed upon by the manufacturer and the owner prior to the test, before the specimen is place
25、d, a fillet ofplaster of paris not exceeding 1 in. in thickness shall be cast on the surface of the upper and lower bearings. The width of the filletcap, upper or lower, shall be not more than 1 in./ft of the specimen diameter, but in no case less than 1 in.4.3.8 The equipment shall be so designed t
26、hat the load will be distributed about the center of the overall length (L1) of thespecimen (Figs. 1-4). At the option of the manufacturer, the center of the load shall be applied at any point of the overall length(L1) of the specimen. The load shall be applied either at a single point or at multipl
27、e points dependent on the length of the specimenbeing tested and the rigidity of the test frame.NOTE 1The user of these test methods is advised that multiple points of load appllications to the upper bearing will permit use of lighter beamswithout excessive deflection.4.4 CalibrationThe loading devi
28、ce shall be one which shall provide an accuracy of 62 % at the specified test loads. Acalibration curve shall be used. The machines used for performing the three-edge-bearing tests shall be verified in accordance withPractices E4.4.5 Procedure:4.5.1 Place the specimen on the two lower bearing strips
29、 in such a manner that the pipe or tile rests firmly and with uniformbearing on each strip.4.5.2 Mark the two ends of the specimen at a point midway between the lower bearing strips and then establish the diametricallyopposite point on each end. Place the upper bearing so that it is aligned with the
30、se marks.4.5.3 For reinforced concrete pipe, any rate of load application up to a maximum of 7500 lbf/linear foot of pipe per minute shallbe used up to 75 % of the specified design strength, at which time the rate of loading shall be reduced to a maximum uniform rateof 13 of the specified design str
31、ength of the pipe per minute. This rate of loading shall be continuous until the specified acceptancedesign strength is reached. If both the design strength and the ultimate strength are being determined, a specified rate of loadingneed not be maintained after the acceptance design strength has been
32、 reached. For non-reinforced concrete pipe, any rate of loadapplication up to a maximum of 7500 lbf/linear foot of pipe per minute shall be used up to 75 % of the specified ultimate strength,C497 132at which time the rate of loading shall be reduced to the maximum uniform rate of 3000 lbf/linear foo
33、t of pipe per minute. At themanufacturers option, the rates of loading in this paragraph shall be any rates that do not exceed the specified maximums.4.5.4 As defined in Terminology C822, the design strength is the maximum load, expressed as a D-load, supported by the pipebefore a crack having a wid
34、th of 0.01 in. occurs throughout a continuous length of 1 ft or more measured parallel to the longitudinalaxis of pipe barrel. The crack is 0.01 in. in width when the point of the measuring gage will, without forcing, penetrate 116 in. atNOTE 1The figures illustrate a method of applying the load to
35、the pipe.FIG. 1 Three-Edge-Bearing Test, Circular PipeC497 133close intervals throughout the specified distance of 1 ft. Measure the width of the crack by means of a gage made from a leaf 0.01in. in thickness (as in a set of standard machinist gages), ground to a point of 116 in. in width with corne
36、rs rounded and with ataper of 14 in./in. as shown in Fig. 6.NOTE 1The figure illustrates a method of applying the load to the pipe.FIG. 2 Three-Edge-Bearing Test, Arch PipeNOTE 1The figure illustrates a method of applying the load to the pipe.FIG. 3 Three-Edge-Bearing Test, Horizontal Elliptical Pip
37、eNOTE 1The figure illustrates a method of applying the load to the pipe.FIG. 4 Three-Edge-Bearing Test, Vertical Elliptical PipeC497 134NOTE 2As used in this specification, the 0.01-in. crack is a test criterion for pipe under load in three-edge bearing test and is not intended as anindication of ov
38、erstressed or failed pipe under installed conditions.4.5.5 As defined in Terminology C822, the ultimate strength is the maximum load supported by the pipe.NOTE 3Ultimate strength of concrete pipe in the buried condition is dependent on varying soil bedding factors and varying failure modes and shall
39、have no relationship to the ultimate strength as defined under three-edge bearing conditions.4.6 ConditioningThe moisture requirements of 1.3 are not required, at the option of the manufacturer.4.7 Calculations:4.7.1 Strength test results shall be calculated in terms of pounds per linear foot. The l
40、ength used in calculating the strengthvalues shall be that indicated by L in Figs. 1-4. For plain end pipe, no bell or spigot, the length L shall be the overall length. Forpipe having a bell or spigot on one end with the opposite end being plain, L shall be the distance from the plain end to the cen
41、terof the joint, where L equals the overall length minus 12 the depth of the bell, or the overall length minus 12 the length of the spigot.4.7.2 The ultimate strength in pounds per linear foot shall be calculated by dividing the maximum test load applied to the pipeby the layingmanufactured length L
42、.4.7.3 The D-load strength in pounds per linear foot per foot of inside diameter or horizontal span shall be either the 0.01-in.crack D-load strength or the ultimate D-load strength. The 0.01-in. crack D-load shall be calculated by dividing the test loadrequired to produce the 0.01-in. crack by the
43、layingmanufactured length L and by the pipe inside diameter or horizontal span.4.8 Precision and BiasThe user of these test methods is advised that the true value for the strength of a concrete pipe cannotbe determined because the specimen is tested to destruction and exact duplicate specimen cannot
44、 be obtained. Therefore, nocalculations of precision and bias are presently capable of being performed. Specifications that include this test method for thevarious types of concrete pipe should include a provision for additional tests of one or more specimens.5. Flat Slab Top Test Method5.1 Summary
45、of Test MethodA load is applied to the flat slab top and the supporting capacity of the flat slab top is measured.5.2 Significance and UseThe test method is a proof of design test performed to prove the adequacy of the design.5.3 ConditioningThe moisture requirements of 1.3 are not required, at the
46、option of the manufacturer.5.4 ProcedurePlace the section that has been designated to receive the flat slab top on a firm, even surface. Assemble the flatslab top to this section. If a frame or riser has been designed to be fitted to the access portion of the flat slab top, assemble it tothe slab to
47、p. Apply the test load to the riser or frame as assembled to the flat slab top. If no access opening has been provided tothe flat slab top, apply the test load to the center of the flat slab top by means of a 12 by 12 by 4-in. wood bearing block. See Fig.7. Calculate the test load as follows:Pu 51.3
48、 D12.17L11I! (1)where:Pu = applied minimum ultimate proof-of-design test load, lb,D = total calculated field dead load on the slab, lb,L = calculated live load on the flat slab top, andI = impact factor, 30 % minimum.6. Core Strength Test Method6.1 Summary of Test MethodThe compressive strength of t
49、he concrete in the pipe is determined by making crushing tests ofcores cut from the pipe.6.2 Significance and UseThe core strength test is a quality control test performed to establish the fact that the finished,shippable precast concrete product had sufficient concrete strength to meet the strengths stated in the specifications.6.3 ApparatusA core drill shall be used for securing cylindrical core specimens from the wall of the pipe; a shot drill or adiamond drill shall be used.FIG. 5 Lower Bearing Strip DetailC497 1356.4 Test Speci