ASTM D4747-2002(2008) Standard Test Method for Determining Unreacted Monomer Content of Latexes Using Gas-Liquid Chromatography《用气液色谱法测定乳胶中未反应单体含量的标准试验方法》.pdf

上传人:terrorscript155 文档编号:517880 上传时间:2018-12-03 格式:PDF 页数:4 大小:82.23KB
下载 相关 举报
ASTM D4747-2002(2008) Standard Test Method for Determining Unreacted Monomer Content of Latexes Using Gas-Liquid Chromatography《用气液色谱法测定乳胶中未反应单体含量的标准试验方法》.pdf_第1页
第1页 / 共4页
ASTM D4747-2002(2008) Standard Test Method for Determining Unreacted Monomer Content of Latexes Using Gas-Liquid Chromatography《用气液色谱法测定乳胶中未反应单体含量的标准试验方法》.pdf_第2页
第2页 / 共4页
ASTM D4747-2002(2008) Standard Test Method for Determining Unreacted Monomer Content of Latexes Using Gas-Liquid Chromatography《用气液色谱法测定乳胶中未反应单体含量的标准试验方法》.pdf_第3页
第3页 / 共4页
ASTM D4747-2002(2008) Standard Test Method for Determining Unreacted Monomer Content of Latexes Using Gas-Liquid Chromatography《用气液色谱法测定乳胶中未反应单体含量的标准试验方法》.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D 4747 02 (Reapproved 2008)Standard Test Method forDetermining Unreacted Monomer Content of Latexes UsingGas-Liquid Chromatography1This standard is issued under the fixed designation D 4747; the number immediately following the designation indicates the year oforiginal adoption or, in t

2、he case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of freemonomer content of acrylic latexes.

3、 Monomers that have beensuccessfully determined by this procedure include n-butylmethacrylate, n-butyl acrylate, styrene, and methyl methacry-late. The determination of other monomers has not beenevaluated, but this test method is believed to be applicable. Theestablished working range of this test

4、method is from 100 to1000 g/g, but there is no reason to believe it will not workoutside of this range, provided that appropriate dilutions andadjustments in specimen size are made.1.2 The volatile composition of acrylic latexes is expectedto change with time and environmental factors. This timedepe

5、ndence of the determination may be seen as an artificiallylarge deviation of results, making the method mostly appli-cable for in-house quality control, where sampling and analysisconditions can be better controlled.1.3 The values stated in inch-pound units are to be regardedas the standard. The val

6、ues given in parentheses are forinformation only.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of re

7、gulatory limitations prior to use. See Section 7 forspecific hazard statements.2. Referenced Documents2.1 ASTM Standards:2D 3980 Practice for Interlaboratory Testing of Paint andRelated Materials3E 260 Practice for Packed Column Gas Chromatography3. Summary of Test Method3.1 A suitable aliquot of th

8、e latex is internally standardizedwith isobutyl acrylate, diluted with water, and then injectedinto a gas chromatographic column containing a packingmaterial coated with a stationary phase that separates theinternal standard and monomers in question from each otherand from other volatile compounds.4

9、. Significance and Use4.1 Excessive amounts of unreacted monomer may causeconcerns relating to toxicity and odor. This test method isdesigned to measure the unreacted monomer content of latexes.The results may be used to monitor the extent of polymeriza-tion during manufacture, as well as to establi

10、sh maximumunreacted monomer content for regulatory purposes.5. Apparatus5.1 Gas Chromatograph, any gas-liquid chromatographicinstrument having a flame ionization detector and lineartemperature programming. An injection port using replaceableglass liners to facilitate periodic removal of accumulatedr

11、esidues is recommended.5.2 Column, 2 by 2-mm inside diameter glass or 6 ft by18-in. outside diameter steel tubing, packed with 10 % byweight of a 2-nitroterephthalic acid derivative of a syntheticpolyester wax on 100/120 mesh acid washed, silane treateddiatomaceous earth.4A column of equivalent or s

12、uperiorperformance may also be used.5.3 RecorderA recording potentiometer with a full-scaledeflection of 10 mV, a full-scale response time of 2 s or less,and a maximum noise level of 60.03 % of full scale (seePractice E 260).5.4 Liquid Charging Devices, microsyringe, 10-L capacityor an automatic liq

13、uid sampling device.5.5 Dropper Pipets, glass, disposable.5.6 Vials, approximately 7-mLcapacity, with caps. Open topscrew cap vials fitted with polytetrafluoroethylene/siliconesepta are preferred.1This test method is under the jurisdiction of ASTM Committee D01 on Paintand Related Coatings, Material

14、s, and Applications and is the direct responsibility ofSubcommittee D01.21 on Chemical Analysis of Paints and Paint Materials.Current edition approved Feb. 1, 2008. Published February 2008. Originallyapproved in 1987. Last previous edition approved in 2002 as D 4747 - 02.2For referenced ASTM standar

15、ds, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn.4Columns prepared from the stationary phases and supports have been foundsuita

16、ble for this purpose and are available from scientific supply houses.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.7 Autosampler Vials, 2-mL capacity (optional).5.8 Analytical Balance, accurate to 0.1 mg.6. Reagents6.1 Purity of

17、ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.5Other grades may beused, provi

18、ded it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.6.2 Carrier Gas, helium of 99.995 % or higher purity. Highpurity nitrogen may also be used.6.3 Acetone, reagent grade.6.4 Isobutyl Acrylate (internal standa

19、rd), 99+ % pure.NOTE 1Isobutyl acrylate was found to be a suitable internal standard,but any other monomer not found in the sample may be substituted. Theinternal standard chosen should yield a clear chromatographic separation,and should be free of interferences.6.5 Monomers of Interest, 99+ % pure.

20、7. Hazards7.1 Acrylic and methacrylic monomers are considered haz-ardous. Precautions should be taken to avoid inhalation andskin or eye contact with these chemicals. All sample prepara-tions should be done in a well-ventilated area, such as a fumehood.8. Preparation of Apparatus8.1 Column Condition

21、ingAttach one end of the column tothe inlet side of the instrument leaving the exit end of thecolumn disconnected. This prevents the contamination of thedetector due to column bleed. Set the helium flow rate at 30mL/min and purge the column at ambient temperature for 30min. Program the column oven f

22、rom 50 to 220C at 2C/minand maintain at 220C overnight. In no case should thetemperature of the column be allowed to exceed 275C.8.2 After conditioning, connect the exit end of the column tothe detector and establish the operating conditions required togive the desired separation (see Table 1). Allo

23、w sufficient timefor the instrument to reach equilibrium as indicated by a stablebaseline. Control the detector temperature so that it is constantto within 1C without thermostat cycling which causes anuneven baseline. Adjust the carrier gas flow rate to a constantvalue.9. Calibration9.1 Determine th

24、e retention of each component expected tobe present by injecting small amounts either separately or inknown mixtures. Retention times should be determined eachday the method is used.9.2 StandardizationDetermine in duplicate the relativeresponse of the monomers of interest to the isobutyl acrylateint

25、ernal standard as follows:9.2.1 Weigh to 0.1 mg about 0.05 g of isobutyl acrylate andeach monomer of interest into a vial (5.6). Weigh approxi-mately5gofacetone into the vial and mix well.9.2.2 Weigh approximately 0.05 g of the solution (9.2.1)into another vial, add approximately5gofacetone and mixw

26、ell.9.2.3 Inject a 1-L aliquot of the solution from 9.2.2 ontothe column and record the chromatogram. The elution order foracetone and each of the monomers using the conditions givenin Table 1 is shown in Fig. 1.9.2.4 Measure the peak areas of the individual componentsand calculate the relative resp

27、onse factor, RF, for the mono-mers of interest as follows:5Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Analar Standards for LaboratoryChemicals, BDH L

28、td., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.TABLE 1 Instrument ConditionsDetector flame ionizationAir flow 240 mL/minHydrogen flow 30 mL/minColumn (suggested) 2 by 2 mm inside diameter glass, packed with

29、10 %of a 2-nitroterephthalic acid derivative of Carbo-wax 20M on 100/120 mesh acid washed, silane-treated diatomaceous earth.Carrier gas, flow rate Helium, 30 mL/minTemperatures:Injection port 250CDetector block 250CColumnInitial 80CHold time 4 minProgram rate 8C/minFinal 200C, or higher as needed (

30、see 8.1)Final hold 10 min, or as neededInjection volume 2 LFIG. 1 Typical ChromatogramD 4747 02 (2008)2RF 5 W13 As!/Ws3 A1!where:RF = relative response factor for each monomer,A1= peak area produced by the monomer,As= peak area produced by the internal standard,W1= weight of monomer used for calibra

31、tion (9.2.1), andWs= weight of internal standard (9.2.1).10. Procedure10.1 If the composition of the latex is not known or if theapproximate level of monomers in the latex is not known, apreliminary analysis must be performed by diluting approxi-mately 0.5 g of latex with approximately5gofwater andi

32、njecting a 2-L aliquot into the chromatographic column.Using the same conditions as for standardization, record thepeaks of all components at attentuation settings that providemaximum peak heights. Use the relative retention times toidentify the monomers present. If the specimen has a compo-nent elu

33、ting at the same retention time as isobutyl acrylate,choose a different internal standard (Note 1).10.2 Prepare a dilute solution of the internal standard byweighing to 0.1 mg about 0.05 g of isobutyl acrylate and5gofacetone into a septum vial. Take care to minimize losses due toevaporation. Prepare

34、 this solution fresh each day the method isused.10.3 Weigh to 0.1 mg an appropriate amount of sample intoa septum vial using Table 2 as a guide to specimen size. Alsoweigh to 0.1 mg 50 mg of the dilute solution prepared in 10.2into the vial. Add about 3 to5gofwater or acetone. Shake thevials on a wr

35、ist action shaker or other suitable device for 15min.NOTE 2The viscosity of a number of latexes increases upon theaddition of an organic solvent. If acetone (or another organic solvent) isfound to be compatible with the specimen, it should be used as the diluentinstead of water. It should be kept in

36、 mind that some organic solvents mayinterfere with the chromatographic separation.10.4 Inject 2 L of the prepared solution (10.3) into thechromatographic column and record the chromatogram usingthe conditions as in 10.1. Measure the peak areas (Note 3)ofthe internal standard and relevant monomers, m

37、ultiplying eacharea by the appropriate factor to express the peak areas on acommon basis.NOTE 3Peak areas may be determined by any method that meets theprecision requirements of Section 12. Electronic integration is recom-mended for best results.10.5 Repeat procedure in 10.3 through 10.4 and calcula

38、tethe mean values.11. Calculations11.1 The weight of the internal standard present in thediluted specimen (10.3) is calculated as follows:W45 W5/W6!W7(1)where:W4= weight of internal standard in diluted specimen in10.3,W5= weight of internal standard used to prepare solutionin 10.2,W6= weight of acet

39、one plus weight of internal standardused to prepare solution in 10.2, andW7= weight of the dilute internal standard solution (10.2)added to the specimen in 10.3.11.2 Calculate the concentration, C, of each monomerpresent in the latex sample from the results obtained from 10.5as follows:C 5 A33 W43 R

40、F!/W83 A4!# 3 106(2)where:C = concentration of free monomer, g/g,A3= peak area produced by the monomer,A4= peak area produced by the internal standard,RF = relative response factor for each monomer (9.2.4),W4= weight of internal standard (11.1), andW8= specimen weight (10.3).12. Precision and Bias61

41、2.1 PrecisionIn an interlaboratory study of the methodby five laboratories using four samples, the within-laboratorycoefficient of variation was found to be 16.8 % relative at 11degrees of freedom and the between-laboratories coefficient ofvariation was 18.1 % relative at 8 degrees of freedom. Based

42、on these coefficients, the following criteria should be used forjudging the acceptability of results at the 95 % confidence level(see Practice D 3980 and Note 4).12.1.1 RepeatabilityTwo results, each the mean of dupli-cate determinations, obtained by the same operator on differentdays should be cons

43、idered suspect if they differ by more than52 % relative.12.1.2 ReproducibilityTwo results, each the mean of du-plicate determinations, obtained by operators in different labo-ratories should be considered suspect if they differ by morethan 59 % relative.NOTE 4Variation in results may be due to the c

44、hanging compositionof the samples used for the study. This precision statement should be usedonly as a guide, since it represents only the magnitude of variation that ispossible, which will vary with time depending on the latex and theparticular monomers being determined.12.2 BiasBias cannot be dete

45、rmined because there are nostandards for monomer content of latices.6Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D011055.TABLE 2 Suggested DilutionsNOTE 1This table shall be used only as a guide. If the monomerconcentrations

46、are outside the range given, appropriate adjustments mustbe made in terms of specimen size, dilution and amount of internalstandard added.Level ofFree MonomerExpected,g/gSpecimenSize,gDiluent,g250 2 3500 1 4750 0.7 4.31000 0.5 4.5D 4747 02 (2008)313. Keywords13.1 analysis of monomers; acrylic latexe

47、s chromatography(subheading gas chromatography); gas chromatography; latexpaints; latex vehicles; styrene; trace monomers; unreactedmonomers in latexesASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Use

48、rs of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every

49、 five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1