ASTM E1347-2006(2015) Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry《使用三色比色法测定颜色和色差的标准试验方法》.pdf

上传人:medalangle361 文档编号:528488 上传时间:2018-12-05 格式:PDF 页数:5 大小:80.19KB
下载 相关 举报
ASTM E1347-2006(2015) Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry《使用三色比色法测定颜色和色差的标准试验方法》.pdf_第1页
第1页 / 共5页
ASTM E1347-2006(2015) Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry《使用三色比色法测定颜色和色差的标准试验方法》.pdf_第2页
第2页 / 共5页
ASTM E1347-2006(2015) Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry《使用三色比色法测定颜色和色差的标准试验方法》.pdf_第3页
第3页 / 共5页
ASTM E1347-2006(2015) Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry《使用三色比色法测定颜色和色差的标准试验方法》.pdf_第4页
第4页 / 共5页
ASTM E1347-2006(2015) Standard Test Method for Color and Color-Difference Measurement by Tristimulus Colorimetry《使用三色比色法测定颜色和色差的标准试验方法》.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: E1347 06 (Reapproved 2015)Standard Test Method forColor and Color-Difference Measurement by TristimulusColorimetry1This standard is issued under the fixed designation E1347; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisi

2、on, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the instrumental measurementof specimens resulting in color coordinates and co

3、lor differencevalues by using a tristimulus colorimeter, also known as atristimulus filter colorimeter or a color-difference meter.1.2 Provision is made in this test method for the measure-ment of color coordinates and color differences by reflected ortransmitted light using either a hemispherical o

4、ptical measur-ing system, such as an integrating sphere, or a bidirectionaloptical measuring system, such as annular, circumferential, oruniplanar 45:0 and 0:45 geometry.1.3 Because of the limited absolute accuracy of tristimuluscolorimeters, this test method specifies that, when color coor-dinates

5、are required, the instrument be standardized by use ofa standard having similar spectral (color) and geometriccharacteristics to those of the specimen. This standard is alsoknown as a product standard. The use of a product standard ofsuitable stability is highly desirable.1.4 Because tristimulus col

6、orimeters do not provide anyinformation about the reflectance or transmittance curves of thespecimens, they cannot be used to gain any information aboutmetamerism or paramerism.1.5 Because of the inability of tristimulus (filter) colorim-eters to detect metamerism or paramerism of specimens, thistes

7、t method specifies that, when color differences are required,the two specimens must have similar spectral (color) andgeometric characteristics. In this case, the instrument may bestandardized for reflectance measurement by use of a whitereflectance standard or, for transmittance measurement, withno

8、specimen or standard at the specimen position.1.6 This test method is generally suitable for any non-fluorescent, planar, object-color specimens of all gloss levels.Users must determine whether an instrument complying withthis method yields results that are useful to evaluate andcharacterize retrore

9、flective specimens, or specimens havingoptical structures.1.7 This test method does not apply to the use of aspectrocolorimeter, which is a spectrometer that providescolorimetric data, but not the underlying spectral data. Mea-surement by using a spectrocolorimeter is covered in PracticeE1164 and me

10、thods on color measurement by spectrophotom-etry.1.8 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of re

11、gulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D2244 Practice for Calculation of Color Tolerances andColor Differences from Instrumentally Measured ColorCoordinatesE179 Guide for Selection of Geometric Conditions forMeasurement of Reflection and Transmission Propertieso

12、f MaterialsE284 Terminology of AppearanceE805 Practice for Identification of Instrumental Methods ofColor or Color-Difference Measurement of MaterialsE1164 Practice for Obtaining Spectrometric Data for Object-Color EvaluationE1345 Practice for Reducing the Effect of Variability ofColor Measurement b

13、y Use of Multiple Measurements3. Terminology3.1 Definitions:3.1.1 The definitions contained in Guide E179 and Termi-nology E284 are applicable to this test method.1This test method is under the jurisdiction of ASTM Committee E12 on Colorand Appearance and is the direct responsibility of Subcommittee

14、 E12.02 onSpectrophotometry and Colorimetry.Current edition approved Nov. 1, 2015. Published November 2015. Originallyapproved in 1990. Last previous edition approved in 2011 as E1347 06 (2011).DOI: 10.1520/E1347-06R15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact A

15、STM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States14. Summary of Test Method4.1

16、 This test method provides procedures for measuringobject-color specimens in either transmission or reflection witha tristimulus colorimeter (hereafter referred to as a colorimeter)by use of the following geometric conditions and standardiza-tion procedures:4.1.1 Color differences by reflected light

17、 of nonmetameric,nonparameric pairs of opaque or translucent specimens by useof either hemispherical geometry, with an integrating sphere, orbidirectional geometry, such as annular, circumferential, oruniplanar 45:0 or 0:45 geometry. The colorimeter may bestandardized by use of a white reflectance s

18、tandard.4.1.2 Color differences by transmitted light ofnonmetameric, nonparameric pairs of transparent or translu-cent specimens by use of hemispherical geometry. The colo-rimeter may be standardized by use of a white standard at thereflection port of the integrating sphere with no specimen inplace.

19、 When translucent specimens are measured, they shouldbe placed flush against the transmission port of the sphere, andthe white standard should, for maximum accuracy, have thesame reflectance and chemical composition as that of the liningof the integrating sphere.4.1.3 Color coordinates by reflected

20、light of opaque ortranslucent specimens by use of either bidirectional or hemi-spherical geometry. The colorimeter may be standardized byuse of a standard having spectral (color) and geometriccharacteristics similar to those of the specimens. Suchstandards, often called hitching-post standards, are

21、hereafterreferred to as local standards.34.1.4 Color coordinates by transmitted light of transparentor translucent specimens by use of hemispherical geometry.The colorimeter may be standardized by use of a localstandard.4.1.5 This test method is not appropriate for fluorescentspecimens.4.1.6 For the

22、 measurement of the daytime color of retrore-flective specimens, the 45:0 or 0:45 conditions are normallyrequired. Some modern, high brightness, retroreflective sheet-ing has been shown to exhibit geometric artifacts if the coneangles are too narrow. In these cases, it may be moreappropriate to use

23、larger cone angles, with appropriate toler-ances.4.1.7 When the specimens exhibit directionality, and acolorimeter with uniplanar bidirectional geometry is used,information on directionality may be obtained by measuringthe specimens at more than one rotation angle, typically at twoangles 90 apart. W

24、hen such information is not required, thesemeasurements may be averaged, or a colorimeter with annularor circumferential bidirectional geometry may be used.4.2 This test method includes two different procedures forstandardizing the colorimeter. The first procedure utilizes awhite standard of known r

25、eflectance factor; the second proce-dure utilizes a local standard.4.2.1 When absolute values of color coordinates are to bedetermined, the use of a white standard is recommended onlywith colorimeters in which there is good conformance of thecolorimeter readings to CIE tristimulus values, as determi

26、nedby measurement of suitable verification standards (see PracticeE1164). With instruments not meeting this requirement, the useof local standards is recommended, but only when the signallevel (see Note 2) from the use of each colorimeter filter isadequately high.NOTE 1Of necessity, the above requir

27、ements are in part subjective, asthe methods for verifying conformance to the requirements may not beavailable to the average user. Each user must decide whether thestandardization procedure selected results in a loss of accuracy in themeasurements that is negligibly small for the purpose for which

28、data areobtained.NOTE 2The adequacy of the signal level can be determined bymeasuring the short-term repeatability without replacement, and ascer-taining that the variation in the answer represents less than 30 % of thedesired or allowable variation.4.2.2 When color differences are to be measured, o

29、nlyrelative measured values are required for the two members ofthe color-difference pair, and standardization by use of either awhite standard or a local standard is satisfactory. In those caseswhere a computer program is being used to predict colortolerances, accuracy of the absolute values of the

30、productstandard color coordinates may become more important (see4.2.1).4.3 Procedures for selecting specimens suitable for preci-sion measurement are included in this test method.4.4 Most modern colorimeters compute the color coordi-nates of the specimen during the measurement. When this is thecase,

31、 the user of this test method must designate the colorsystem to be used in the computation (see Practice D2244).5. Significance and Use5.1 The most direct and accessible methods for obtainingthe color differences and color coordinates of object colors areby instrumental measurement using colorimeter

32、s or spectro-photometers with either hemispherical or bidirectional opticalmeasuring systems. This test method provides procedures forsuch measurement by use of a colorimeter with either abidirectional or a hemispherical optical measuring system.5.2 This test method is suitable for measurement of co

33、lordifferences of nonmetameric, nonparameric pairs of object-color specimens, or color coordinates of most such specimens.A further limitation to the use of colorimeters having hemi-spherical geometry is the existence of a chromatic integrating-sphere error that prevents accurate measurement of colo

34、rcoordinates when the colorimeter is standardized by use of awhite standard.45.3 For the measurement of retroreflective specimens bythis test method, the use of bidirectional geometry is recom-mended (See Guide E179 and Practice E805).NOTE 3To ensure inter-instrument agreement in the measurement ofr

35、etroreflective specimens, significantly tighter tolerances than those givenin Practice E1164 in the section on Influx and Efflux Conditions for45:Normal (45:0) and Normal:45 (0:45) Reflectance Factor are required3Hunter, R. S., “Photoelectric Tristimulus Colorimetry with Three Filters,”Journal, Opti

36、cal Society of America, Vol 32, 1942, pp. 509558.4Hoffman, K., “Chromatic Integrating-Sphere Error in TristimulusColorimeters,” Journal of Color and Appearance, Vol 1, No. 2, 1971, pp. 1621.E1347 06 (2015)2for the instrument angles of illumination and viewing. Information on therequired tolerances i

37、s being developed.5.4 A requirement for the use of a colorimeter to obtainaccurate color coordinates is that the combination of source,filter, and detector characteristics to duplicate accurately thecombined characteristics of a CIE standard illuminant andobserver. When this requirement is not met,

38、this test methodrequires the use of local standards for improving accuracy inthe measurement of color coordinates (see also 4.2). For themeasurement of small color differences betweennonmetameric, nonparameric specimens, accuracy in absolutecolor coordinates is less important and standardization of

39、thecolorimeter by use of a white standard is satisfactory. However,accurate color-difference measurement requires that specimenpairs have similar spectral and geometric characteristics.6. Apparatus6.1 Colorimeter, designed for the measurement of object-color specimens. Use hemispherical geometry for

40、 reflection ortransmission measurements or bidirectional geometry for re-flection measurements.6.2 Standardization Plaques, supplied by the manufacturer.6.2.1 White Reflecting Tile or Standard (Mandatory)(Ifthe colorimeter has hemispherical geometry, a standard ofhemispherical reflectance factor is

41、required; if bidirectionalgeometry, a standard of bidirectional reflectance factor isrequired.)6.2.2 Local Standardization Plaques (Recommended), hav-ing spectral (color) and geometric characteristics similar tothose of specimens to be measured, as required for themeasurement of color coordinates.6.

42、2.3 Light Trap (Hemispherical) or Polished Black Glass(Bidirectional) Standards (Recommended; mandatory if soindicated by the manufacturer), for setting or verifying the zeroreading of the colorimeter.6.3 Verification Standards (Recommended), supplied by themanufacturer or obtained separately.6.4 St

43、andard Backing Material(s) (Recommended), forbacking translucent specimens during measurement.7. Test Specimens7.1 For highest precision, select specimens with the follow-ing properties:7.1.1 High material uniformity and freedom from blemishesin the area to be measured, and7.1.2 Opaque specimens tha

44、t have at least one plane surface;translucent and transparent specimens that have two essentiallyplane and parallel surfaces and that have a standard thickness,when one is specified.8. Standardization and Verification8.1 Standardization for the Measurement Color Differencesof Specimen Pairs:8.1.1 St

45、andardize the colorimeter by use of the whitestandard (mandatory) and the zero-reading standard (ifrequired), following the manufacturers instructions.8.1.2 Verify the accuracy of the standardization and theinstrument performance by measuring a series of verificationstandards (recommended).8.2 Stand

46、ardization for Measurement of Color Coordinates:NOTE 4If the verification tests of 8.2.2 are not to be carried out, omit8.2.1 and 8.2.2 and proceed to 8.2.3.8.2.1 Standardize the colorimeter by use of the whitestandard (mandatory) and the zero-reading standard (ifrequired), following the manufacture

47、rs instructions.8.2.2 Verify the accuracy of the standardization and theinstrument performance by measuring a series of verificationstandards (recommended).8.2.3 Standardize the colorimeter by use of the appropriatelocal standard for the specimens to be measured (mandatory)and the zero-reading stand

48、ard (if required), following themanufacturers instructions.9. Procedure9.1 When required, select the color scales to be used in thecomputation of color coordinates or color differences.9.2 Handle the specimen carefully; avoid touching the areato be measured. When necessary, clean the specimen by ana

49、greed procedure.9.3 When hemispherical geometry is used, make the follow-ing selections:9.3.1 For the measurement of reflecting specimens, selectinclusion or exclusion of the specular component of reflectionas desired (see Guide E179 and Practice E805).9.3.1.1 If the specimen is translucent, back it with a standardbacking material during the measurement.9.3.2 For the measurement of fully transparent specimensby transmission, place the specimen in the transmission com-partment of the colorimeter.9.3.2.1 If total luminous quantities are desired, place thespecimen flush ag

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1