ASTM E2056-2004(2016) Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses Calibrated Using Surrogate Mixtures《用于多变量分析和替代混合物校准的光谱仪.pdf

上传人:towelfact221 文档编号:530158 上传时间:2018-12-05 格式:PDF 页数:10 大小:131.40KB
下载 相关 举报
ASTM E2056-2004(2016) Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses Calibrated Using Surrogate Mixtures《用于多变量分析和替代混合物校准的光谱仪.pdf_第1页
第1页 / 共10页
ASTM E2056-2004(2016) Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses Calibrated Using Surrogate Mixtures《用于多变量分析和替代混合物校准的光谱仪.pdf_第2页
第2页 / 共10页
ASTM E2056-2004(2016) Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses Calibrated Using Surrogate Mixtures《用于多变量分析和替代混合物校准的光谱仪.pdf_第3页
第3页 / 共10页
ASTM E2056-2004(2016) Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses Calibrated Using Surrogate Mixtures《用于多变量分析和替代混合物校准的光谱仪.pdf_第4页
第4页 / 共10页
ASTM E2056-2004(2016) Standard Practice for Qualifying Spectrometers and Spectrophotometers for Use in Multivariate Analyses Calibrated Using Surrogate Mixtures《用于多变量分析和替代混合物校准的光谱仪.pdf_第5页
第5页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: E2056 04 (Reapproved 2016)Standard Practice forQualifying Spectrometers and Spectrophotometers for Usein Multivariate Analyses, Calibrated Using SurrogateMixtures1This standard is issued under the fixed designation E2056; the number immediately following the designation indicates the ye

2、ar oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice relates to the multivariate calibration

3、ofspectrometers and spectrophotometers used in determining thephysical and chemical characteristics of materials. A detaileddescription of general multivariate analysis is given in Prac-tices E1655. This standard refers only to those instances wheresurrogate mixtures can be used to establish a suita

4、ble calibra-tion matrix. This practice specifies calibration and qualificationdata set requirements for interlaboratory studies (ILSs), that is,round robins, of standard test methods employing surrogatecalibration techniques that do not conform exactly to PracticesE1655.NOTE 1For some multivariate s

5、pectroscopic analyses, interferencesand matrix effects are sufficiently small that it is possible to calibrate usingmixtures that contain substantially fewer chemical components than thesamples that will ultimately be analyzed. While these surrogate methodsgenerally make use of the multivariate math

6、ematics described in PracticesE1655, they do not conform to procedures described therein, specificallywith respect to the handling of outliers.1.2 This practice specifies how the ILS data is treated toestablish spectrometer/spectrophotometer performance qualifi-cation requirements to be incorporated

7、 into standard testmethods.NOTE 2Spectrometer/spectrophotometer qualification procedures areintended to allow the user to determine if the performance of a specificspectrometer/spectrophotometer is adequate to conduct the analysis so asto obtain results consistent with the published test method prec

8、ision.1.2.1 The spectroscopies used in the surrogate test methodswould include but not be limited to mid- and near-infrared,ultraviolet/visible, fluorescence and Raman spectroscopies.1.2.2 The surrogate calibrations covered in this practice are:multilinear regression (MLR), principal components regr

9、ession(PCR) or partial least squares (PLS) mathematics. Thesecalibration procedures are described in detail in PracticesE1655.1.3 For surrogate test methods, this practice recommendslimitations that should be placed on calibration options that areallowed in the test method. Specifically, this practi

10、ce recom-mends that the test method developer demonstrate that allcalibrations that are allowed in the test method producestatistically indistinguishable results.1.4 For surrogate test methods that reference spectrometer/spectrophotometer performance practices, such as PracticesE275, E925, E932, E95

11、8, E1421, E1683,orE1944; TestMethods E387, E388,orE579; or Guide E1866, this practicerecommends that instrument performance data be collected aspart of the ILS to establish the relationship betweenspectrometer/spectrophotometer performance and test methodprecision.2. Referenced Documents2.1 ASTM Sta

12、ndards:2D6277 Test Method for Determination of Benzene in Spark-Ignition Engine Fuels Using Mid Infrared SpectroscopyD6300 Practice for Determination of Precision and BiasData for Use in Test Methods for Petroleum Products andLubricantsE131 Terminology Relating to Molecular SpectroscopyE275 Practice

13、 for Describing and Measuring Performance ofUltraviolet and Visible SpectrophotometersE387 Test Method for Estimating Stray Radiant Power Ratioof Dispersive Spectrophotometers by the Opaque FilterMethodE388 Test Method for Wavelength Accuracy and SpectralBandwidth of Fluorescence SpectrometersE579 T

14、est Method for Limit of Detection of Fluorescence ofQuinine Sulfate in SolutionE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE925 Practice for Monitoring the Calibration of Ultraviolet-Visible Spectrophotometers whose Spectral Bandwidth1This practice

15、 is under the jurisdiction of ASTM Committee E13 on MolecularSpectroscopy and Separation Science and is the direct responsibility of Subcom-mittee E13.11 on Multivariate Analysis.Current edition approved April 1, 2016. Published May 2016. Originallyapproved in 1999. Last previous edition approved in

16、 2010 as E2056 04(2010).DOI: 10.1520/E2056-04R16.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright AS

17、TM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1does not Exceed 2 nmE932 Practice for Describing and Measuring Performance ofDispersive Infrared SpectrometersE958 Practice for Estimation of the Spectral Bandwidth ofUltraviolet-Visible Spectrophot

18、ometersE1421 Practice for Describing and Measuring Performanceof Fourier Transform Mid-Infrared (FT-MIR) Spectrom-eters: Level Zero and Level One TestsE1655 Practices for Infrared Multivariate QuantitativeAnalysisE1683 Practice for Testing the Performance of ScanningRaman SpectrometersE1866 Guide fo

19、r Establishing Spectrophotometer Perfor-mance TestsE1944 Practice for Describing and Measuring Performanceof Laboratory Fourier Transform Near-Infrared (FT-NIR)Spectrometers: Level Zero and Level One Tests3. Terminology3.1 Definitions:3.1.1 For definitions of terms and symbols relating toinfrared, u

20、ltraviolet/visible and Raman spectroscopy, refer toTerminology E131.3.1.2 For definitions of terms and symbols relating tomultivariate analysis, refer to Practices E1655.3.2 Definitions of Terms Specific to This Standard:3.2.1 spectrometer/spectrophotometer qualification, ntheprocedures by which a u

21、ser demonstrates that the performanceof a specific spectrometer/spectrophotometer is adequate toconduct a multivariate analysis so as to obtain precisionconsistent with that specified in the test method.3.2.2 surrogate calibration, na multivariate calibrationthat is developed using a calibration set

22、 which consists ofmixtures with pre-specified and reproducible compositions thatcontain substantially fewer chemical components than thesamples that will ultimately be analyzed.3.2.3 surrogate test method, na standard test method thatis based on a surrogate calibration.4. Summary of Practice4.1 Asur

23、rogate test method must specify the composition oftwo sets of samples. One set is used to calibrate thespectrometers/spectrophotometers. The second set of samplesis used to qualify the spectrometer/spectrophotometer to per-form the analysis. The compositions of both sets are expressedin terms of wei

24、ght or volume fraction depending on whetherthe samples are prepared gravimetrically or volumetrically. Thecompositions of both sets should be specified in the surrogatetest method. If the surrogate test method is being used toestimate a physical property, then the test method shouldindicate what val

25、ue of the property is to be assigned to each ofthe calibration and qualification samples.4.2 The surrogate test method should specify the minimumspectrometer/spectrophotometer requirements for instrumentsthat can be used to perform the test method.4.3 The spectrometer/spectrophotometer test method s

26、houldspecify the exact conditions that are to be used to collect and,where appropriate, to calculate the spectral data used in thecalibration and analysis.4.4 The test method should specify the exact mathematicsthat are to be used to develop the multivariate calibration.Allowable spectral preprocess

27、ing methods should be defined.The specific mathematics (MLR, PCR or PLS) should bespecified, and the acceptable range for the numbers of variablesshould be given.4.5 When the ILS is conducted to establish the precision ofthe surrogate test method, the calibration data for all of theparticipating lab

28、oratories should be collected and used tocalculate a pooled standard error of calibration for the testmethod. The pooled standard error of calibration and itsassociated degrees of freedom should be reported in the testmethod.4.5.1 When a user is calibrating a spectrometer/spectrophotometer, the stan

29、dard error of calibration is calcu-lated and compared to the pooled standard error of calibrationfrom the ILS to determine if the performance of the calibratedspectrometer/spectrophotometer is adequate to produce analy-ses of the precision specified in the test method.4.5.2 If a user is purchasing a

30、 precalibrated spectrometer/spectrophotometer, the instrument vendor should supply thestandard error of calibration and its statistical comparison tothe pooled standard error of calibration.4.6 During the ILS, each participating laboratory analyzes aset of qualification samples and reports both the

31、compositionsof the qualification set and the estimates made using themultivariate analysis. A pooled error of qualification is calcu-lated and reported as part of the test method along with itscorresponding degrees of freedom.4.6.1 Before a user may use the spectrometer/spectrophotometer, it must be

32、 qualified to perform the surro-gate test method. The qualification set is analyzed, and astandard error of qualification is calculated. The standard errorof qualification is statistically compared with the pooledstandard error of qualification to determine if the performanceof the calibrated spectr

33、ometer/spectrophotometer is adequate toproduce analyses of the precision specified in the test method.4.6.2 Spectrometer/spectrophotometer qualification is re-quired regardless of whether the calibration is performed by thevendor or the user.4.6.3 Spectrometer/spectrophotometer qualification shouldb

34、e repeated after major maintenance has been performed on thespectrometer/spectrophotometer so as to determine whetherrecalibration is required.5. Significance and Use5.1 This practice should be used by the developer ofstandard test methods that employ surrogate calibrations.5.1.1 This practice assis

35、ts the test method developer insetting and documenting requirements for the spectrometer/spectrophotometers that can perform the test method.5.1.2 This practice assists the test method developer insetting and documenting spectral data collection and compu-tation parameters for the test method.E2056

36、04 (2016)25.1.3 This practice assists the test method developer inselecting among possible multivariate analysis procedures thatcould be used to establish the surrogate calibration. Thepractice describes statistical tests that should be performed toensure that all multivariate analysis procedures th

37、at are allowedwithin the scope of the test method produce statisticallyindistinguishable results.5.1.4 This practice describes statistical calculations that thetest method developer should perform on the calibration andqualification data that should be collected as part of the ILSthat establishes th

38、e test method precision. These calculationsestablish the level of performance that spectrometers/spectrophotometers must meet in order to perform the testmethod.5.2 This practice describes how the person who calibrates aspectrometer/spectrophotometer can test the performance ofsaid spectrometer/spec

39、trophotometer to determine if the per-formance is adequate to conduct the test method.5.3 This practice describes how the user of a spectrometer/spectrophotometer can qualify the spectrometer/spectrophotometer to conduct the test method.6. Surrogate Calibrations6.1 Practices E1655 assumes that the c

40、alibration set used todevelop a multivariate model contains samples of the sametype as those that are to eventually be analyzed using themodel. Practices E1655 requires use of outlier statistics toensure that samples being analyzed are sufficiently similar tothe calibration samples to produce meanin

41、gful results. Forsome spectroscopic analyses, however, it is possible to cali-brate using gravimetrically or volumetrically prepared mix-tures that contain significantly fewer components than thesamples that will ultimately be analyzed. For these surrogatetest methods, the outlier statistics describ

42、ed in Practices E1655are not appropriate since all samples are expected to be outliersrelative to the simplified calibrations. Thus, surrogate testmethods cannot fulfill the requirements of Practices E1655.While surrogate test methods may make use of the mathemat-ics described in Practices E1655, th

43、ey should not claim tofollow the procedures described in that practice.6.1.1 In developing surrogate test methods, it is necessary tothoroughly understand and account for potential spectral inter-ferences. Typically, the spectral range used in surrogate cali-brations will be limited so as to minimiz

44、e interferences. Forthose interferences that cannot be eliminated through limitingthe spectral range, representative components that mimic theinterference should be included in the calibration mixtures.6.1.2 Test Method D6277 provides an example of a surro-gate test method. The FT-MIR analysis of be

45、nzene in gasolineis calibrated using mixtures of benzene, isooctane, toluene andxylenes and PLS mathematics. The calibration mixtures con-tain far fewer components than gasoline, but the spectral rangeused in the analysis is limited to a narrow range about arelatively interference-free benzene peak.

46、 Toluene and xylenesare used in the calibration mixtures to adequately mimic theinterferences that are present in gasolines.6.2 Calibration Sets:6.2.1 The sets of surrogate samples that are used to calibratethe spectrometers/spectrophotometers should satisfy the re-quirements of Practices E1655.Ifk

47、is the number of variables(MLR wavelengths or frequencies, PCR principal componentsor PLS latent variables) used in the model, then the minimumnumber of calibration samples should be the greater of 24 or6k. If the calibration set is derived from an experimentaldesign, and if the spectra have been sh

48、own to be linearfunctions of the component concentrations, then fewer calibra-tion samples can be used, but in all cases the minimum numberof calibration samples should be the greater of 24 or 4k. Theexperimental design must independently vary all componentsover the desired analysis range.6.2.2 When

49、 calibrating for a single component, the calibra-tion set should uniformly span the range over which theanalysis of that component is to be conducted. Additionalcomponents that are present in the calibration set to simulateinterferences should be independently and uniformly variedover a range at least as large as is likely to be encounteredduring actual application of the test method.6.2.3 When calibrating for a property that depends on morethan one chemical component, the calibration set shoulduniformly span the range over which the property analysis is tobe conducted, and all

展开阅读全文
相关资源
猜你喜欢
  • STAS 8815 1-1979 Equipment for chemical industry JOINTS WITH FLAT LINED AND WELDED-NECK FLANGES FOR WELDING General tehnical requirements for quality《化学工业设备 平,内衬和颈法兰焊接接头 一般质量技术要求 》.pdf STAS 8815 1-1979 Equipment for chemical industry JOINTS WITH FLAT LINED AND WELDED-NECK FLANGES FOR WELDING General tehnical requirements for quality《化学工业设备 平,内衬和颈法兰焊接接头 一般质量技术要求 》.pdf
  • STAS 8815 2-1979 Equipment for chemical industry JOINTS FOR WELDING WITH FLAT LINED AND WELDED NECK FLANGE NP 2 5 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP2,5尺寸 》.pdf STAS 8815 2-1979 Equipment for chemical industry JOINTS FOR WELDING WITH FLAT LINED AND WELDED NECK FLANGE NP 2 5 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP2,5尺寸 》.pdf
  • STAS 8815 3-1979 Equipment for Chemical Industry JOINTS FOR WELDING WITH FLAT LINED AND WELDEDNECK FLANGE NP 6 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP 6 尺寸 》.pdf STAS 8815 3-1979 Equipment for Chemical Industry JOINTS FOR WELDING WITH FLAT LINED AND WELDEDNECK FLANGE NP 6 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP 6 尺寸 》.pdf
  • STAS 8815 4-1979 Equipment for chemical industry JOINTS FOR WELDING WITH FLAT LINED AND WELDEDNECK FLANGE NP 10 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP 10 尺寸 》.pdf STAS 8815 4-1979 Equipment for chemical industry JOINTS FOR WELDING WITH FLAT LINED AND WELDEDNECK FLANGE NP 10 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP 10 尺寸 》.pdf
  • STAS 8815 5-1979 Equipment for chemical industry JOINTS FOR WELDING WITH FLAT LINED AND WELDEDNECK FLANGE NP 16 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP 16 尺寸 》.pdf STAS 8815 5-1979 Equipment for chemical industry JOINTS FOR WELDING WITH FLAT LINED AND WELDEDNECK FLANGE NP 16 Dimensions《化学工业设备 具有平内衬及焊接颈法兰的焊接接头NP 16 尺寸 》.pdf
  • STAS 8815 6-1982 Equipment for chemical industry WELDING JOINTS FOR WELDED-NECK LINED PLAIN FLANGE NP 25 Dimensions《化学工业设备 焊接颈部,内衬,纯法兰用的焊接接头NP25 尺寸 》.pdf STAS 8815 6-1982 Equipment for chemical industry WELDING JOINTS FOR WELDED-NECK LINED PLAIN FLANGE NP 25 Dimensions《化学工业设备 焊接颈部,内衬,纯法兰用的焊接接头NP25 尺寸 》.pdf
  • STAS 8816-1986 IMITATION LEATHER Determination of adhesion of coating film to the surface《人造皮 涂膜粘附于表面的测定 》.pdf STAS 8816-1986 IMITATION LEATHER Determination of adhesion of coating film to the surface《人造皮 涂膜粘附于表面的测定 》.pdf
  • STAS 8817-1971 SYNCHRONOUS HYDROGENERATORS Definitions classification symbols《同步水轮发电机定义,分类,符号 》.pdf STAS 8817-1971 SYNCHRONOUS HYDROGENERATORS Definitions classification symbols《同步水轮发电机定义,分类,符号 》.pdf
  • STAS 8818-1986 DIAGONAL AND AXIAL CENTRIFUGAL PUMPS Determination method of noise level《角和轴向离心泵 噪音水平的测定方法 》.pdf STAS 8818-1986 DIAGONAL AND AXIAL CENTRIFUGAL PUMPS Determination method of noise level《角和轴向离心泵 噪音水平的测定方法 》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ASTM

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1