1、注册电气工程师供配电公共基础(数学)历年真题试卷汇编 1 及答案与解析一、单项选择题1 (2005 年) 设 a,b 都是向量,下列说法正确的是( )。(A)(a 十 b)(a 一 b)=a 2 一b 2(B) a.(a.b)=a 2b(C) (a+b)(a 一 b)=aa 一 bb(D)(a.b) 2=a 2b 22 (2008 年) 设 =i+2j+3k,=i 一 3j 一 2k,与 , 都垂直的单位向量为( )。3 (2009 年) 设 =-i+3j+k,=i+j+tk,已知 =-4i-4k,则 t 等于( )。(A)1(B) 0(C) -1(D)-24 2010 年) 设 , 都是非零
2、向量, =,则( )。(A)=(B) 且 (C) ( 一 )(D)( 一 )5 (2006 年) 已知 =i+aj-3k,=ai 一 3j+6k,=-2i+2j+6k ,若 , 共面,则 a 等于( )。(A)1 或 2(B) -1 或 2(C) -1 或一 2(D)1 或-26 2005 年)过 z 轴和点(1,2,-1)的平面方程是( )。(A)x+2yz 一 6=0(B) 2xY=0(C) y+2z=0(D)x+z=07 (2006 年) 设平面 的方程为 3x 一 4y 一 5z 一 2=0,以下选项中错误的是( )。(A)平面 过点(-1 ,0, -1)(B)平面 的法向量为-3i+
3、4j+5k(C)平面 在 z 轴的截距是(D)平面 平面-2x-y 一 2z+2=0 垂直8 (2007 年) 设平面 的方程为 2x 一 2y+3=0,以下选项中错误的是( )。(A)平面 的法向量为 ij(B)平面 垂直于 z 轴(C)平面 平行于 z 轴(D)平面 与 xoy 面的交线为9 (2007 年) 设直线的方程为 则直线( ) 。(A)过点(1,-1 ,0),方向向量为 2i+j-k(B)过点 (1,-1,0) ,方向向量为 2i-j+k(C)过点 (-1,1,0) ,方向向量为-2i-j+k(D)过点(-1,1,0),方向向量为 2i+j-k10 (2010 年) 设直线的方
4、程为 则直线( ) 。(A)过点(-1,2,-3) ,方向向量为 i+2j-3k(B)过点 (-1,2,-3),方向向量为-i-2j+3k(C)过点 (1,2,-3),方向向量为 i 一 2j+3k(D)过点(1,-2 ,3),方向向量为 -i-2j+3k11 (2008 年) 已知平面 过点(1,1,0)、(0,0,1)、(0,1,1),则与平面 垂直且过点(1 ,1,1)的直线的对称方程为( ) 。12 (2005 年) 过点 M(3,-2 ,1) 且与直线 平行的直线方程是( )。13 (2009 年)设平面的方程为 x+y+z+1=0,直线的方程为 1x=y+1=z,则直线与平面( )
5、。(A)平行(B)垂直(C)重合(D)相交但不垂直14 (2005 年) 将椭圆 绕 x 轴旋转一周所生成的旋转曲面方程是( )。15 (2008 年) 下列方程中代表锥面的是( ) 。16 (2007 年) 下列方程中代表单叶双曲面的是( ) 。17 (2006 年) 球面 x2+y2+z2=9 与平面 x+z=1 的交线在 xoy 坐标面上投影的方程是 ( )。(A)x 2+y2+(1 一 x)2=9(B)(C) z2+y2+(1 一 z)2=9(D)18 (2010 年) 设 f(x)= 则( )。(A)f(x)为偶函数,值域为 (-1,1)(B) f(x)为奇函数,值域为(-,0)(C
6、) f(x)为奇函数,值域为(-1 ,1)(D)f(x)为奇函数,值域为 (0,+)19 (2005 年) 下列极限计算中,错误的是( ) 。20 (2010 年) 求极限 时,下列各种解法中正确的是( )。(A)用罗比达法则后,求得极限为 0(B)(C)(D)因为不能用罗比达法则,故极限不存在21 (2006 年) 若 则 a 与 b 的值是( )。(A)b0,a 为任意实数(B) a0,b=0(C) a=1,b=-8(D)a=0 ,b=022 (2008 年) 函数 在 x1 时,f(x)的极限是( ) 。(A)2(B) 3(C) 0(D)不存在23 (2007 年) 若有 则当 xa 时
7、,f(x)不一定是( )。(A)有极限的函数(B)有界函数(C)无穷小量(D)比(xa)高阶的无穷小24 (2005 年) 设函数 若 f(x)在 x=0 连续,则 a 的值是( )。(A)0(B) 1(C) -1(D)25 (2010 年)下列命题正确的是( ) 。(A)分段函数必存在间断点(B)单调有界函数无第二类间断点(C)在开区间连续,则在该区间必取得最大值和最小值(D)在闭区间上有间断点的函数一定有界26 (2009 年) 若函数 f(x)在点 x0 间断,g(x)在点 x0 连续,则 f(x)g(x)在点 x0( )。(A)间断(B)连续(C)第一类间断(D)可能间断可能连续27
8、(2005 年) 设函数 若 f(x)在 x=0 可导,则 a 的值是( )。(A)1(B) 2(C) 0(D)-128 (2010 年) 设函数 可导,则必有( )。(A)a=1 ,b=2(B) a=-1,b=2(C) a=1,b=0(D)a=-1,b=029 (2006 年) 函数 在点 x 的导数是( ) 。 30 (2008 年) 函数 31 (2009 年) 函数32 (2008 年) 已知 f(x)是二阶可导的函数, y=e2f(x),则 为( )。(A)e 2f(x)(B) e2f(x)f”(x)(C) e2f(x)(2f(x)(D)2e 2f(x)2(f(x)2+f(x)33
9、(2007 年) 函数 在 X 处的微分是( ) 。34 (2006 年) 已知函数(A)2x+2y(B) x+y(C) 2x-2y(D)x-y35 (2007 年) 已知 xy=kz(k 为正常数),则 等于( )。(A)1(B) -1(C) k(D)注册电气工程师供配电公共基础(数学)历年真题试卷汇编 1 答案与解析一、单项选择题1 【正确答案】 A【试题解析】 利用向量数量积的分配律以及 a.a=a 2,有(a+b).(a-b)=a.a+b.aabbb=a 2 一b 2,应选(A)。经验证,其他选项都是错误的。【知识模块】 数学2 【正确答案】 D【试题解析】 由向量积定义知, ,故作向
10、量 , 的向量积,再单位化则可。由于【知识模块】 数学3 【正确答案】 C【试题解析】 【知识模块】 数学4 【正确答案】 C【试题解析】 由 =,有 一 =0,提公因子得 ( 一 )=0,由于两向量平行的充分必要条件是向量积为零,所以 a( 一 )。【知识模块】 数学5 【正确答案】 C【试题解析】 若 , 共面,则 计算三阶行列式得 a2+3a+2=0,求解该方程得 a=-1 或-2。【知识模块】 数学6 【正确答案】 B【试题解析】 过 Z 轴的平面方程为 Ax+By=0,再将点(1,2,-1)代入得 A=-2B,故有-2Bx+By=0,消去 B 得-2x+y=0。【知识模块】 数学7
11、【正确答案】 D【试题解析】 平面 3x 一 4y 一 5z 一 2=0 的法向量为 n1=(-3,4,5),平面-2xy一 2z+2=0 的法向量为 n2=(-2,-1,-2),两个平面垂直的充要条件是法向量的数量积为零,而 n1.n2=(-3).(-2)+4.(-1)+5.(-2)=-80,故应选(D) 。将点(-1,0,-1)代入 3x一 4y 一 5z 一 2=0 满足,(A)正确;显然-3i+4j+5k 是平面 的法向量,(B)正确:将 x=y=0 代入 3x 一 4y 一 5z 一 2=0,解得 z= ,平面 在 z 轴的截距是 ,(C)正确。【知识模块】 数学8 【正确答案】 B
12、【试题解析】 平面 的方程中不含 z,平面 平行于 z 轴,不可能垂直于 z 轴,故应选(B) 。(A)选项和(C)选项显然正确;只要验证点 在平面 与 xoy 面内,以及向量(1 ,1,0) 垂直平面 与 xoy 面,就可知(D)选项正确。【知识模块】 数学9 【正确答案】 A【试题解析】 由所给直线的对称式方程知,直线过点(1,-1,0),方向向量为-2i-j+k,故 2i+j 一 k 也是所给直线的方向向量。【知识模块】 数学10 【正确答案】 D【试题解析】 将直线的方程化为对称式得 直线过点(1,-2,3),方向向量为 i+2j-3k 或-i-2j+3k。【知识模块】 数学11 【正
13、确答案】 B【试题解析】 因为直线与平面 垂直,故平面 的法向量就是所求直线的方向向量,又平面 过点(1,1,0) 、(0,0,1)、(0,1, 1),三点可确定两个向量,平面 的法向量可取为这两个向量的向量积,即 n= 所求直线的方向向量为i+k。【知识模块】 数学12 【正确答案】 D【试题解析】 直线 的方向向量应垂直于平面 xy 一 z+1=0 和平面2x+y 一 3z+4=0 的法向量,因此所求直线的方向向量 s 应是这两个法向量的向量积,即 ,故应选 D。【知识模块】 数学13 【正确答案】 D【试题解析】 平面 x+y+z+1=0 的法向量为(1,1,1),直线 1x=y+1=z
14、 的方向向量为(-1,1, 1),这两个向量既不垂直也不平行,表明直线与平面相交但不垂直。【知识模块】 数学14 【正确答案】 C【试题解析】 【知识模块】 数学15 【正确答案】 A【试题解析】 【知识模块】 数学16 【正确答案】 A【试题解析】 【知识模块】 数学17 【正确答案】 B【试题解析】 联立 x2+y2+z2=9 和 x+z=1,消去 z,得投影柱面方程 x2+y2+(1 一 x)2=9,再与 z=0 联立,就得到投影曲线的方程。【知识模块】 数学18 【正确答案】 C【试题解析】 【知识模块】 数学19 【正确答案】 B【试题解析】 【知识模块】 数学20 【正确答案】 C
15、【试题解析】 故不能用罗比达法则,但求导后极限不存在不能得出原极限不存在,所以选项(A)(D)都不对, 选项(B)错。【知识模块】 数学21 【正确答案】 A【试题解析】 有b0,a 为任意实数。【知识模块】 数学22 【正确答案】 D【试题解析】 分段函数在交接点必须考虑左右极限, 在x1 时,f(x)的极限不存在。【知识模块】 数学23 【正确答案】 B【试题解析】 这说明当 xa 时,f(x)是有极限的函数,且是无穷小量,并且是比(x-a)高阶的无穷小,因而选项(A)、(B)、(C)都是对的,f(x)有界函数不一定成立。【知识模块】 数学24 【正确答案】 A【试题解析】 f(x)在 x
16、=0 处连续,则在该点左右极限存在且相等,并等于 f(0)=1+a,由于【知识模块】 数学25 【正确答案】 B【试题解析】 第二类间断点包括无穷间断点和震荡间断点,有界函数不可能有无穷间断点,单调函数不可能有震荡间断点,故单调有界函数无第二类间断点,应选B。分段函数可以不存在间断点,闭区间上连续的函数在该区间必取得最大值和最小值,在闭区间上连续的函数一定有界,故其他三个选项都是错误的。【知识模块】 数学26 【正确答案】 D【试题解析】 可通过举例说明,例如取 x0=0, f(x)在 x0 间断,g(x)连续,f(x)g(x)=g(x) 在 x0 连续:取 x0=0, f(x)在 x0 间断
17、,g(x)连续,f(x)g(x)=f(x)在 x0 间断,故 f(x)g(x)在点 x0 可能间断可能连续。【知识模块】 数学27 【正确答案】 D【试题解析】 分段函数在交接点处要考虑左右导数,只有当左右导数都存在且相等才在这点可导,【知识模块】 数学28 【正确答案】 B【试题解析】 显然函数 f(x)在除 x=1 点外处处可导,只要讨论 x=1 点则可。由于f(x)在 x=1 连续,【知识模块】 数学29 【正确答案】 A【试题解析】 利用两个函数乘积求导公式以及复合函数求导法则,【知识模块】 数学30 【正确答案】 C【试题解析】 由复合函数求导规则,以及 2sinxcosx=sin2x,【知识模块】 数学31 【正确答案】 C【试题解析】 由复合函数求导规则,有【知识模块】 数学32 【正确答案】 D【试题解析】 【知识模块】 数学33 【正确答案】 A【试题解析】 首先 dy=ydx,再利用两个函数商的求导公式以及复合函数求导法则,有【知识模块】 数学34 【正确答案】 B【试题解析】 令 u=xy,v=x/y,由这两式可解得 x2=uv,于是有 f(u,v)=uv,即f(x,y)=xy,【知识模块】 数学35 【正确答案】 B【试题解析】 【知识模块】 数学