1、Oktober 2014DEUTSCHE NORM DIN-Normenausschuss Luft- und Raumfahrt (NL)Preisgruppe 12DIN Deutsches Institut fr Normung e. V. Jede Art der Vervielfltigung, auch auszugsweise, nur mit Genehmigung des DIN Deutsches Institut fr Normung e. V., Berlin, gestattet.ICS 49.140!%:K)“2234006www.din.deDDIN EN 166
2、03-32-03Raumfahrttechnik Strukturmodelle der finiten Elemente Methode;Englische Fassung EN 16603-32-03:2014Space engineering Structural finite element models;English version EN 16603-32-03:2014Ingnierie spatiale Modles lments finis pour les structures;Version anglaise EN 16603-32-03:2014Alleinverkau
3、f der Normen durch Beuth Verlag GmbH, 10772 Berlin www.beuth.deGesamtumfang 24 SeitenDIN EN 16603-32-03:2014-10 2 Nationales Vorwort Dieses Dokument (EN 16603-32-03:2014) wurde vom Technischen Komitee CEN/CLC/TC 5 Raumfahrt“ erarbeitet, dessen Sekretariat vom DIN (Deutschland) gehalten wird. Das zus
4、tndige deutsche Normungsgremium ist der Arbeitsausschuss NA 131-10-01 AA Interoperabilitt von Informations-, Kommunikations- und Navigationssystemen“ im DIN-Normenausschuss Luft- und Raumfahrt (NL). Dieses Dokument wurde speziell zur Behandlung von Raumfahrtsystemen erarbeitet und hat daher Vorrang
5、vor jeglicher Europischer Norm, da es denselben Anwendungsbereich hat, jedoch ber einen greren Geltungsbereich (z. B. Luft- und Raumfahrt) verfgt. DIN EN 16603-32-03:2014-10 3 Nationaler Anhang NA (informativ) Begriffe, Abkrzungen und Symbole 3 Begriffe und Abkrzungen 3.1 Begriffe aus anderen Normen
6、 Fr die Anwendung dieses Dokuments gelten die Begriffe und Definitionen nach ECSS-S-ST-00-01 und ECSS-E-ST-32. 3.2 Fr diese Norm spezifische Begriffe 3.2.1 vorgegebener Freiheitsgrad Freiheitsgrad mit bekanntem Wert, als Eingabe angegeben 3.2.2 Freiheitsgrade skalare Komponenten des Lsungsvektors be
7、i der Finite-Elemente-Methode (FE-Methode) ANMERKUNG Beispiele fr Freiheitsgrade sind Komponenten der Verschiebung (Translation) und Drehung (Rotation) sowie andere physikalische Gren wie Strahlenkrmmungsvariable oder modale Koordinaten. 3.2.3 abhngiger Freiheitsgrad Freiheitsgrad, der mittels einer
8、 Gleichung mit mehreren Randbedingungen aus den Werten anderer Freiheitsgrade berechnet wird, als zustzliche Modellierungseingabe vorgesehen 3.2.4 dynamische Reduktion (auch als dynamischer Ansatz bezeichnet) Methode zur Reduktion der Gre des FE-Modells durch Transformation der gesamten Menge von FE
9、-Freiheitsgraden in eine Menge modularer Koordinaten und eine Teilmenge fixierter Verschiebungs- und Drehungskomponenten ANMERKUNG Es gibt verschiedene Methoden der dynamischen Reduktion (z. B. Craig-Bampton- und MacNeal-Verfahren). 3.2.5 unabhngiger Freiheitsgrad nicht vorgegebener, unabhngiger Fre
10、iheitsgrad 3.2.6 modale Freiheitsgrade (auch als modale Koordinaten bezeichnet) Freiheitsgrade, die sich auf eine Basis dynamischer Eigenmoden beziehen DIN EN 16603-32-03:2014-10 4 3.2.7 Ausgangs-Transformationsmatrix Matrix, die den reduzierten Freiheitsgrad-Vektor des Modells oder dessen Zeitablei
11、tungen vormultipliziert, um den Wert der restlichen nicht fixierten Freiheitsgrade und Ausgangsvariablen zu erhalten (z. B. Elementkraft und -spannung) 3.2.8 quantifizierbare Strukturvariable Struktureigenschaft, die gemessen werden kann und gewhlt wird, um ein Strukturverhalten zu quantifizieren AN
12、MERKUNG Beispiele fr quantifizierbare Strukturvariablen sind: Verschiebungen, Spannungen, Eigenfrequenzen, Werkstoffeigenschaften, Elementeigenschaften, Lasten, Temperaturen. 3.2.9 Matrix der Starrkrperbewegung Matrix, die als Spalten die Vektoren der Starrkrperverschiebungen eingetragen hat 3.2.10
13、Gre des FE-Modells Anzahl aller Freiheitsgrade des FE-Modells 3.2.11 statische Reduktion (auch als statischer Ansatz bezeichnet) Methode zur Reduktion der Anzahl der Freiheitsgrade in einem Modell mittels einer Reduktions-Transformationsmatrix oder Matrix der Randbedingungen ANMERKUNG Die Guyan-Redu
14、ktion ist eine weitverbreitete Methode der statischen Reduktion. 3.2.12 Strukturmodell Darstellung eines speziellen Strukturverhaltens durch eine gewhlte Menge von quantifizierbaren Struktur-variablen beschrieben mittels Beziehungen, die die Werte von Untermengenvariablen vorhersagen (als Ausgangsva
15、riablen bezeichnet) in Abhngigkeit von den Restvariablen (als Eingangsgren bezeichnet) 3.3 Abkrzungen Fr die Anwendung dieser Norm gelten die Abkrzungen nach ECSS-S-ST-00-01 und die folgenden Abkrzungen. Abkrzung Bedeutung DOF Freiheitsgrad (en: degree of freedom) FE Finites Element (en: finite elem
16、ent) OTM Ausgangs-Transformationsmatrix (en: output transformation matrix) 3.4 Symbole ERMatrix fr Spannungsenergie der Starrkrperbewegung FRVektor fr modale Restkraft der Starrkrperbewegung K Steifigkeitsmatrix M Massenmatrix RMatrix der Starrkrperbewegung EUROPEAN STANDARD NORME EUROPENNE EUROPISC
17、HE NORM EN 16603-32-03 August 2014 ICS 49.140 English version Space engineering - Structural finite element models Ingnierie spatiale - Modles lments finis pour les structures Raumfahrttechnik - Strukturmodelle der finiten Elemente Methode This European Standard was approved by CEN on 10 February 20
18、14. CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may
19、be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own
20、language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Forme
21、r Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. CEN-CENELEC Management Centre: Avenue Marnix 1
22、7, B-1000 Brussels 2014 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for CENELEC Members. Ref. No. EN 16603-32-03:2014 EEN 16603-32-03:2014 (E) 2 Table of contents Foreword 4 Introduction 5 1 Scope . 6 2 Normative references . 7
23、3 Terms, definitions and abbreviated terms 8 3.1 Terms from other standards 8 3.2 Terms specific to the present standards . 8 3.3 Abbreviated terms. 9 3.4 Symbols 10 4 General requirements. 11 4.1 Overview 11 4.2 Coordinate systems and unit system 11 4.3 Modelling requirements 12 4.4 Requirements fo
24、r reduced models 12 5 Model checks 14 5.1 General . 14 5.2 Model geometry checks for non reduced models 14 5.3 Elements topology checks for non reduced models 14 5.4 Rigid body motion checks for reduced and non reduced models 15 5.4.1 Overview . 15 5.4.2 Rigid body motion mass matrix . 15 5.4.3 Rigi
25、d body motion strain energy and residual forces check . 15 5.5 Static analysis checks for reduced and non reduced models 16 5.6 Stress free thermo-elastic deformation check for non reduced models . 17 5.7 Modal analysis checks 18 5.8 Reduced model versus non reduced model consistency checks . 18 6 T
26、est Analysis correlation 19 6.1 Overview 19 DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 3 6.2 Provisions . 19 Bibliography . 20 DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 4 Foreword This document (EN 16603-32-03:2014) has been prepared by Technical Committee CEN/CLC/TC 5 “Space”, the
27、secretariat of which is held by DIN. This standard (EN 16603-32-03:2014) originates from ECSS-E-ST-32-03C. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2015, and conflicting national s
28、tandards shall be withdrawn at the latest by February 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such patent rights. This document has been dev
29、eloped to cover specifically space systems and has therefore precedence over any EN covering the same scope but with a wider domain of applicability (e.g. : aerospace). According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to imp
30、lement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romani
31、a, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 5 Introduction The concept of model is of primary importance in all the fields of the science. In engineering disciplines - and specifically in structure mechanics - a
32、 model is a representation, able to describe and predict the behaviour of a structure in terms of quantifiable variables. A first step to build a model is to choose the variables which are relevant to the studied phenomenon (e.g. displacements, stress, or frequencies) and the types of relationships
33、among them (e.g. the theories provided by elasticity, plasticity, stability, statics, or dynamics): this representation is called the physical model. The second step is to build a mathematical representation (e.g. using differential equations, integral equations, or probability methods): this repres
34、entation is called the mathematical model. A third step is to build a numerical model, which is a formulation of the mathematical model by means of numerical algorithms, based on several approaches (e.g. the finite element method, the boundary method, or the finite difference method). A finite eleme
35、nt model of a structure is such a type of numerical model of structure behaviours. This Standard is restricted only to the requirements for finite element models of space structures, to be fulfilled to ensure modelling quality, i.e. the correct use of this specific technology the finite element meth
36、od - and the acceptance of the results. DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 6 1 Scope ECSS-E-ST-32-03 (Space engineering Structural finite element models) defines the requirements for finite element models used in structural analysis. This Standard specifies the requirements to be met
37、 by the finite element models, the checks to be performed and the criteria to be fulfilled, in order to demonstrate model quality. The Standard applies to structural finite element models of space products including: launch vehicles, transfer vehicles, re-entry vehicles, spacecraft, landing probes a
38、nd rovers, sounding rockets, payloads and instruments, and structural parts of all subsystems. This standard may be tailored for the specific characteristics and constrains of a space project in conformance with ECSS-S-ST-00. DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 7 2 Normative reference
39、s The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to, or revision of any of these publications, do not apply. However, parties to agreements based on this ECSS Standar
40、d are encouraged to investigate the possibility of applying the more recent editions of the normative documents indicated below. For undated references, the latest edition of the publication referred to applies. EN reference Reference in text Title EN 16601-00-01 ECSS-S-ST-00-01 ECSS system Glossary
41、 of terms EN 16603-32 ECSS-E-ST-32 Space engineering Structural general requirements DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 8 3 Terms, definitions and abbreviated terms 3.1 Terms from other standards For the purpose of this Standard, the terms and definitions from ECSS-S-ST-00-01 and ECS
42、S-E-ST-32 apply. 3.2 Terms specific to the present standards 3.2.1 constrained DOF DOF which has a known value, given as input 3.2.2 degrees of freedom scalar components of the solution vector in the FE method NOTE Examples of DOF are displacement and rotation components, and other physical quantiti
43、es as beam warping variable, or modal coordinates. 3.2.3 dependent DOF DOF which is computed from the values of other DOF, by means of a multi-constraint equation, provided as additional modelling input NOTE Examples of multi-constraint equations are the rigid body relationship of two or more DOFs.
44、3.2.4 dynamic reduction (also referred as dynamic condensation) method to reduce the FE model size by means of a transformation of the full set of FE DOFs in a set of modal coordinates, and a subset of retained displacement and rotation components NOTE There are several methods of dynamic reduction
45、(e.g. Craig-Bampton, MacNeal). 3.2.5 free DOF unconstrained independent DOF 3.2.6 modal DOFs (also referred as modal coordinates) DOFs related to a basis of dynamic eigenmodes DIN EN 16603-32-03:2014-10 EN 16603-32-03:2014 (E) 9 3.2.7 output transformation matrix matrix which pre-multiplies the redu
46、ced model DOF vector or its time derivatives to obtain the value of remaining non-retained DOFs and output variables (e.g. element force and stress) 3.2.8 quantifiable structure variable structure property which can be measured and is chosen to quantify a structure behaviour NOTE Examples of quantif
47、iable structure variables are: displacements, stresses, natural frequencies, material properties, element properties, loads, temperatures. 3.2.9 rigid body motion matrix matrix which has as columns the vectors of rigid body displacements 3.2.10 size of FE model number of all the DOFs of the FE model
48、 3.2.11 static reduction (also referred as static condensation) method to reduce the number of the DOFs in a model by means of a reduction transformation matrix or constraint modes matrix. NOTE Guyan reduction is a widely employed method of static reduction. 3.2.12 structural model representation of
49、 a specific structure behaviour - described by a chosen sets of quantifiable structure variables - by means of relationships which predict the values of variables subset (named output variables) as depending from the remaining variables (named input variables) 3.3 Abbreviated terms For the purpose of this Standard, the abbreviated terms from ECSS-S-ST-00-01 and the following apply: Abbreviation Meaning DOF degree of freedom FE finite element OTM output transformation matrix DIN EN 16603-32-03:2014-10 EN 16603-